### Stereoscopic 3D video for the human eyes Frédéric Devernay

with Sergi Pujades Elise Mansilla Loïc Lefort Martin Guillon Matthieu Volat Sylvain Duchêne Adrian Ramos-Peron





Richard CARLSON-Barbara RUSH

KATHLEEN HUGHES JOE SAWYER

RIES DRAKE - RUSSELL JOHNSON

WET - Screening to AMET CLUB - Present to WILLOW ALLOW - & SMARLESS-WEINSTRALL P

AMAZING! EXCITING! SPECTACULAR!

### Stereoscopic cinema

- Movie made using two cameras in stereoscopic configuration
- Not the same as:
  - free-viewpoint video (hundreds of cameras in linear or array arrangement)
  - 3-D video from multiple views



## History

- I922: first public projection (The Power of Love, anaglyph)
- 1952: first feature-length movie (Bwana Devil)
- 1954: Hitchcock's Dial M for Murder
- 1980's: Rebirth of 3-D, IMAX-3D
- 2003-: Digital 3-D (Spy Kids 3-D, U2 3D, animated 3-D movies by Disney et al.)
- 2009: Coraline, Avatar, live sports events...



## 3-D cameras: Fixed/manual interocural













### US motion-control





### Binocle motion-control systems



## Why do we see 3D?

• NOT because we have two eyes...



### **Three-Dimensional Depth Cues**



And also **motion parallax**, **depth of field**, and... **stereoscopy** 





### Depth of field as a depth cue: focus matters!

# Conflicting depth cues

10

- The 9 cues may give opposite indications on the scene geometry
- The pseudoscope

   (Wheatstone) reverse left
   and right eyes causes closer
   objects to seem even bigger:
  - big in the image
  - binocular disparity indicates they are also far away



Wheever makes a DESIES, without the Remoledge of PERSTRETIVE,

#### William Hogarth, 1754

### Conflicting cues: Ames room



Used in Lord of the Rings, Eternal Sunshine of the Spotless Mind...



Coraline (H. Selick & P. Kozachik)





Coraline (H. Selick & P. Kozachik)





Coraline (H. Selick & P. Kozachik)





#### Coraline (H. Selick & P. Kozachik)



RINRIA

• Correcting causes of visual fatigue



- Correcting causes of visual fatigue
- Color-balancing left and right cameras



- Correcting causes of visual fatigue
- Color-balancing left and right cameras
- Adapt the movie to the screen size



- Correcting causes of visual fatigue
- Color-balancing left and right cameras
- Adapt the movie to the screen size
- Global 3-D changes (interocular, infinity...)



- Correcting causes of visual fatigue
- Color-balancing left and right cameras
- Adapt the movie to the screen size
- Global 3-D changes (interocular, infinity...)
- Local 3-D changes (3-D touchup)



- Correcting causes of visual fatigue
- Color-balancing left and right cameras
- Adapt the movie to the screen size
- Global 3-D changes (interocular, infinity...)
- Local 3-D changes (3-D touchup)
- Playing with the depth of focus



- Correcting causes of visual fatigue
- Color-balancing left and right cameras
- Adapt the movie to the screen size
- Global 3-D changes (interocular, infinity...)
- Local 3-D changes (3-D touchup)
- Playing with the depth of focus
- Playing with the proscenium



- Correcting causes of visual fatigue
- Color-balancing left and right cameras
- Adapt the movie to the screen size
- Global 3-D changes (interocular, infinity...)
- Local 3-D changes (3-D touchup)
- Playing with the depth of focus
- Playing with the proscenium
- 3-D compositing (real or CG scenes)



#### The shooting geometry: classical representation (top view)





# The shooting geometry: simplified representation (rectified images)





## A few definitions

- Screen plane ... in the viewer space
- Plane of convergence .. in the scene space
- 3-D cone
- Interocular / Interaxial
  - bigger than 65mm (can be 30m)□ hyperstereo
  - smaller than 65mm (can be 0cm) 
     hypostereo
- Convergence





#### Binocular disparity: how stereopsis works

• Objects at different depths cause different disparities









### left view





## right view





#### The proscenium arch (or stereoscopic window)

#### The stereoscopic display is a window on the world

If object closer than convergence plane touches the image borders...

20

Add black borders to move proscenium arch closer





## Visual fatigue: a critical point

- Can lead to:
  - a simple headache
  - temporary or permanent damage to the oculo-motor system (especially on children)
- Probably a public health problem (just as the critical fusion frequency on CRT screens...)



## Some sources of visual fatigue

#### Crosstalk

- Breaking the proscenium rule (stereoscopic window violation)
- Horizontal disparity limits
- Vertical disparity
- Vergence-accomodation conflicts





## Visual fatigue: geometric differences



- a. vertical shift
- b. size difference
- c. distortion difference
- d. keystone (toed-in cameras)
- e. horizontal shift (divergence...)



### Visual fatigue: accommodation and convergence discrepancy

- distance of accommodation
  = distance to screen
  ≠ distance of convergence
  Different display
  ⇒ Different depth of field:
- Human DOF=0.2-0.3D (diopter=1/m)
- 3DTV (3.5m): 2m → I2m
- Movie theater (16m):  $4m \rightarrow infinity$





Emoto et al. 2005

## Visual fatigue: screen size effects

One 3-D movie, different screens 🗌 risk of divergence

Shifting the images solves divergence issue, but creates other problems:

• Breaks the stereoscopic window

• Causes depth distortions




# Correcting geometric differences: the problem

- Mechanics and optics are intrinsically imprecise
- Check that the 3D movie can be comfortably viewed on a given screen (movie theater or 3DTV)
- On output, disparity must be purely horizontal
- Transform the images to remove geometric differences





#### DisparityTagger: The Binocle / INRIA solution

- Detect remarkable points or regions in both images
- Match these points and regions
- Compute image transformations to remove vertical disparities
- Real-time correction of HD-SDI stereoscopic streams (2 x 1080i60)



# Research or Engineering?

- Based on state-of-the-art Computer Vision techniques:
  - SIFT/SURF detector/descriptor + matching
  - F-matrix by RANSAC/PROSAC
  - Stereo pair rectification
- But still hard to implement in practice
  - Must be robust to any kind of images
  - Rectification for cinema imposes constraints (aspect ratio, no black borders)

































Alerts for a 4m wide screen





Alerts for a 10m wide screen: crowd too close!





36

INRIA

Alerts for a 10m wide screen + shift: divergence!

#### Shooting/viewing geometries

|   | camera<br>(without<br>primes)    | display<br>(with primes) |
|---|----------------------------------|--------------------------|
| b | camera<br>interocular            | eye interocular          |
| н | convergence<br>distance          | screen distance          |
| W | width of<br>convergence<br>plane | screen size              |
| Ζ | real depth                       | perceived depth          |
| d | disparity (as a fraction of W)   |                          |





#### Depth and disparity





#### Perceived depth

b, W, H, Z : Camera b', W', H', Z': Display d' = d : Disparity (no shift) a) compute disparity from real depth:  $d = \frac{b}{W} \frac{Z - H}{Z}$ b) compute perceived depth from disparity: H'  $Z' = \frac{H'}{1 - \frac{W'}{b'}d}$ 





### Perceived depth (2)

b, W, H, Z : Camera
b', W', H', Z': Display
c) Finally, eliminate disparity:

$$Z' = \frac{H'}{1 - \frac{W'}{b'} \frac{b}{W} \frac{Z-H}{Z}}$$





#### Perceived vs. real depth

 $Z' = \frac{H'}{1 - \frac{W'}{b'} \frac{b}{W} \frac{Z-H}{Z}}$ • The relation between Z and Z is the except if  $\frac{W}{b} = \frac{W'}{b'}$ , in which case:  $Z' = Z \frac{H'}{H}$ • Infinity is perceived at  $Z' = \frac{11}{1 - \frac{W'}{W} \frac{b}{W}}$ • Divergence happens when Z' becomes negative (divergence at Z=infinity iff  $\frac{b'}{W'} < \frac{b}{W}$ )



# Image scale ratio

 enlargement/reduction in image plane (X-Y) of an object at depth Z (disparity d) wrt an object at H (0):

 $\sigma' = \frac{s'}{s} = \frac{H'}{Z'} \frac{Z}{H} = \frac{1 - dW'/b'}{1 - dW/b}.$ 

Х



# The roundness factor

 Idea: we film a sphere, does it look like an rugby ball or a flat disc?

 $\rho = \frac{\partial Z'}{\partial Z} / \frac{\partial X'}{\partial X} = \frac{\partial Z'}{\partial Z} / \frac{W'/s'}{W/s}$ 

• In the screen plane:  $\rho_{\text{screen}} = \frac{W}{W'} \frac{\partial Z'}{\partial Z} = \frac{b}{H} \frac{H'}{b'}$ 



#### The canonical (linear) setup

 $\frac{W}{b} = \frac{W'}{b'}, \qquad Z' = Z\frac{H'}{H}$ • Keeping proportions,  $\rho = 1$ :  $\frac{W'}{W} = \frac{H'}{H}\left(=\frac{b'}{b}\right)$ 

• The only depth-preserving and roundnesspreserving setup: Scale factor between filming setup and display setup (fixed FOV, baseline depends on the width of the convergence plane)



#### Case study

- b = b' = 6.5cm
- W = W' = 10m
- H = H' = 15m
- no image shift
- depth is measured from plane of convergence / screen, for comparison purposes



### Global depth modifications: changing b (camera interocular)



### Global depth modifications: $H = \alpha b$



**INRIA** 

#### Global depth modifications:

- Depth transformations are nonlinear: the perceived space is a homographic transform of the real space
- Shooting from farther away while zooming in with a bigger interocular doesn't distort (much) depth: That's probably the right way to zoom in - the baseline should be proportional to the convergence distance, but be careful with divergence at Z=infinity!



### Global depth modifications: the depth consistency rule

Roundness of on-screen objects:

 $\rho_{\rm screen} = \frac{b}{H} \frac{H'}{b'}$ 

•  $\rho_{\rm screen} = 1$ , Depth consistency rule:

$$\frac{b}{H} = \frac{b'}{H'}$$



Global depth modifications: the depth consistency rule  $\frac{b}{H} = \frac{b'}{H'}$ • Screen size does not matter! (except at Z=infinity,

- where divergence may occur on bigger screens)
- The screen distance dramatically influences the perceived depth, but it's usually constrained by the viewing conditions (movie theater vs. home cinema vs.TV)
- Since b' is fixed, what can we do to enforce the depth consistency rule, i.e. to produce the same 3-D experience in different environments?

#### Perceived depth distortions: summary

- 3D geometry is not distorted if and only if shooting and viewing geometry are the same
  - used for IMAX-3D
  - impossible in real situations (sports...)
  - may break the stereoscopic window
- Objects don't look «more 3D» on a bigger screen
- Distance is important: «more 3D» if screen farther
- Novel view synthesis is the only solution (requires depth map)



# Fixing the roundness factor issue using novel view synthesis

Changing the shooting parameters by post-processing the images to fix the roundness factor:

- **Baseline modification** (or view interpolation) corrects on-screen roundness factor, but distorts off-screen depth and image size, and may cause eye divergence
- Viewpoint modification gives perfect depth and roundness factor, but difficult in practice because of large disoccluded areas
- We propose depth-preserving disparity remapping - fixes the on-screen roundness factor, no depth distortion, no eye divergence



# **Baseline modification**

- synthesized baseline b" computed by setting  $\rho_{screen} = I$
- view interpolation (b" < b) or extrapolation (b" > b)
- symmetric or asymmetric (one view can be left untouched)



#### New view synthesis: baseline modification



Scene geometry

Viewing geometry

NRIA

Objects on screen are not distorted, but everything else is **very** distorted! **Divergence** may happen!

# Viewpoint modification

- Synthesized geometry is homothetic to the viewing geometry.
- Both views must be synthesized (symmetric)
- Large scene parts that are not visible in the original views may become **disoccluded**
- Produces many holes and image artifacts...



#### New view synthesis: viewpoint modification



Scene geometry

Viewing geometry

No distortion at all, but many objects cannot be seen in the original images... bad solution!



# Depth-preserving

Compute a disparity remapping function d"(d) so that

 $\rho_{screen} = I \text{ and } Z' = \alpha Z$ 

same disparity as viewpoint modification, but no depth-dependent image scaling.

 Depth is preserved, but image scale is not respected for off-screen objects
 Just like when zooming with a 2-D camera.



#### New view synthesis: disparity remapping



Scene geometry

Viewing geometry

**VRIA** 

Best tradeoff: depth is not distorted, no divergence happens, only apparent width is distorted... like on any 2D image

#### Example showing disoccluded areas



#### baseline



#### Example showing disoccluded areas



viewpoint



#### Example showing disoccluded areas



hybrid disparity remapping


Demo: Perceived depth from stereopsis and depthpreserving disparity remapping



## Dealing with the vergenceaccomodation conflict

- Human depth of field for a screen at 3m is from 1.9m to 7.5m.
- Corresponds to disparities from -3.8cm to 2.6cm.
- In-focus objects should not be displayed out of this range!
- Hybrid disparity remapping can be used to adapt movies so that:
  - The on-screen roundness factor is I
  - The disparity at infinity is no more than 2.6cm
- Just synthesize views for a screen at the same distance, but 2.5 times wider! (6.5/2.6=2.5)



#### New View Synthesis from Stereo









# Artifacts detection and removal

Our approach:

- Use asymmetric synthesis, so that one view keeps the highest possible image quality
- **Detect** artifacts in the synthesized view
- **blur out** the artifacts by anisotropic filtering

Why it should work:

- This locally reduces the high frequency content on artifacts
- The visual system will use *other 3-D cues* from the other (original) view to perceive 3-D in these areas [Stelmach 2000,Seuntiens 2006]
- Temporal consistency *should not be critical* because of low spatial frequency (to be validated)



## Detecting and removing artifacts

Comparison of interpolated image with the original images:

- colors should be similar
- Laplacian should be similar too: an edge can not appear!

We compute a **confidence map** combining both, and use it as the conduction in the Perona-Malik anisotropic diffusion/ blur equation:







# Interpolated frame





# Interpolated frame, artifacts removed



#### Interpolated frame





#### Interpolated frame, artifacts removed





#### Novel view synthesis: summary

- **Depth map** accuracy is **not crucial**, but the **rendered quality is**
- Hybrid disparity remapping of stereoscopic content solves most issues caused by classical novel view synthesis methods.
- Asymmetric synthesis helps preserving perceived quality.
- Artifact removal is performed by detecting and blurring out artifacts in the synthesized view

Work In Progress:

- Video-rate depth map computation on the GPU with accurate depth boundaries (currently 80ms in OpenCL on Quadro5000)
- Video-rate view synthesis integrated in a stereoscopic player (Bino) from left & right views and left & right disparity maps coded as H.264 videos



#### More work in progress...

- Real-time monitoring:
  - focus and color differences between the cameras
- Beyond the stereo rig, novel camera setups:
  - for sports / wildlife (long focal length)
  - for production of glasses-free 3DTV content
- Post-production (with the artist in the loop):
  - stereo compositing, video cut-and-paste using stereo
  - relighting



# Thank you

Credits:

Yves Pupulin (Binocle) and Bernard Mendiburu the Stereocam SuperHD RIAM project (2005-2008) the 3DLive FUI project (2009-2012) www.3dlive-project.com

