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The scene flow is the 3D motion field of the scene (Vedula ICCV’99).

Surface Flow, Morpheo-INRIA 2011

Applications Using depth and/or color
@ Action recognition ) 1

@ Interaction
@ 3D reconstruction
@ Navigation RGB-D SLAM Dataset TUM
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Scene flow computation

Stereo or multiview:

@ From several optical flows (Vedula et al. PAMI'05)

Scene flow
@ Using structure constraints (Huguet & Devernay ICCV'07, Wedel et al. ECCV'08, Basha et al. CVPR'10)
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Scene flow computation

Color and depth:
@ Optical flow and range flow under orthography (Spies et al. CVIU'02, Lukins et al. BMVC'04)
0=IxU+IyU+1 W=ZyU+ZyU+ Z,
Optical flow equation Range flow equation
@ Photometric constraints (Letouzey BMVC'11) @ Particle filtering (Hadfield&Bowden ICCV'11)
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@ Fixed camera
@ Brightness and depth consistency
@ Scene composed by locally-rigid moving parts

Approach

Local motion: 2D tracking of 3D surface patches in a LK framework.
Global motion: an adaptive 2D TV-regularization of the 3D motion field.
Large/small motions: multi-scale and a set of 3D correspondences.

E(v) = Ep(Vv) + aEyn(Vv) + BER(V),

where v = {vyx, vy, Vz}.

v
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Presentation outline

@ Motion model

@ Dataterm

@ Regularisation term
@ Sparse matching term
@ Optimisation

@ Experimentation

@ Conclusion
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Motion model

Let X = (X, Y, Z) be a 3D point in the camera frame. The image flow
(u, v) induced by the 3D motion v = {vy, vy, vz} is given by:

X+vxy X 1 vy — Xvz
=x = s e = — _—
U=x-x (z+ vy z) Z (1 +Vz/Z)

and
Y4+vy Y 1 vy —yvy
—/— = —_ = — _—
=y -y <Z+vz z) z<1+vz/2'

where (x, y) = M(X) and the new 3D points is X' = X + v.

Using a Taylor series in the denominator term containing vz, we get

() - (-2 (2 )

:f(vZ/Z)m1v<1—%>
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Motion model

Surface *
Surface point
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Presentation outline

@ Motion model

@ Data term

@ Regularisation term
@ Sparse matching term
@ Optimisation

@ Experimentation

@ Conclusion
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Intensity image Depth image
Brightness constancy assumption (BCA)

(W(X; V) = h(X)
Depth velocity constraint (DVC)

Zo(W(x;v)) = Z1(x) + vz(x)
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We solve for the local scene flow vector v that minimizes

> (lor (e v)E) 2 (o2 (x V).

{x}

where W (s?) = v/s?2 + £2 is a differentiable approx. of the L' norm.

Using IRLS the scene flow increment is given by
Av = 12{ v/ (p, (x v)) (Vi) pr (X, V)
{x}
A (P2 (%)) (V2d = (0,0,1)7 pz (X, v) }

where the Jacobian is defined as
_ oW 1 fr 0 cx—x
Tov o Zx)\ 0 f, ¢,—y )’
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The matrix H is the Gauss-Newton approximation of the Hessian

g 2ol Kis (Ul z2 Zx 2, Zy(Zs — 1)
H= Z 7/5’ Wy Bl )+ )\% zz, z2 Z,(Zs — 1)

Y Z(ZE -1 Z(Z-1) (ZZ-1)?

with Iy = — (xlx + yly) and Zx = — (xZx + yZ).

Final expression

Ep(v) = > > \|f<|p/(X/,V(X))|2)+>\\U<|PZ(X/7V(X))|2)

X x'eN(x)
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Regularisation term

The regularization term is given by:

Er(v) = Y w(X)|VV(X)|,

X

where we use the notation |Vv| := |Vvx| + |Vvy| + |[VVz].
The decreasing positive function
w(x) = exp (—a|VZ(x)|”)

prevent regularization of the motion field along strong depth
discontinuities.
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Matching term

Let {(x1,x}) ..., (x}¥,xY)} be the set of correspondences, the
matching term is defined as

=22 P ¥ (Jdsp (x, m(x)) — v(x)*)
with p(x) = 1 if there is a descriptor in a region around point x.
The matching function m(x) gives the correspondency of each pixel x.

The function d3p (X1, X2) = M} (X2Z>(X2)— X1Z;(X1)) computes the
3D displacement for each correspondency.
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Optimization

To compute the scene flow we introduce an auxiliary flow and solve for
the 3D motion field v that minimizes

E(v.u) = Ep(v) + aEu(v) + 55 [V — u* + FEr(u)

where 0 is a small constant.

@ For a fixed v, we solve for u that minimizes
1
> 5, lu(x) - v(X)|? + w(x) [Vu(x)|
X
where x = 6. For every dimension this problem corresponds to a

weighted version of the ROF model for image denoising.
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Optimization

@ For a fixed u, we solve for v that minimizes
Eo(v) + aBu(v) + 3 2 V() — u(x)
The scene flow increment can be computed as

Av=H" )" {_\u’ (p? (x’,v)) (Vi) pr (X, V)

1
+ a p(x)V (p§D (x,v)) pap (X, V) + 29< V)
where p3p is a 3D residue defined as
p3p (X, V) = d3p (X, m(X)) — v,

and H is the Gauss-Newton approximation of the Hessian matrix.
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Optimization

The (G-N approximation) of the Hessian matrix is given by

H= Y {w’ (,ﬁ (x',v)) v, (VW)
x' eN(x)
AV (pg (x’,v)) (Vzd — D) (V2d — D)}
+ ap(x)V’ (p§D (x, v)) lg + %Id

with l4 the 3 x 3 identity matrix.
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Experimentation - Middlebury dataset

(W
T
: oo L4 A0
Z4 ground truth (OF)

Comparisons

Details

LGsF: d method
@ Images : Teddy, Cones (2 and 6) sF: proposed metho

Lsg: local scene flow
@ 5 levels of PYR decomposition SF

Ak i
@ Window size: 5x5 TV-L': optical flow + depth

Error measures
@ Optical flow: NRMSqg, AAEor
@ Scene flow: NRMSy, P10%

Hugg7: Huguet and Devernay, ICCV 2007
Bas(: Basha et al., CVPR 2010

]
("]
(]
@ ORTgg: ortographic camera
(*]
(]
@ Had,,: Hadfield and Bowden, ICCV 2011
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Experimentation - Middlebury datastes

Teddy Cones
NRMSor AAE NRMSor AAE
LGsr 0.0222 | 0.837 0.0164 | 0.526
TV-LT 0.0642 1.360 0.0509 0.932
Lsk 0.0780 2.288 0.0577 1.991

ORTsg | 0.0811 0.866 0.0594 0.963
Basjo 0.0285 1.010 0.0307 0.390
Hugoz 0.0621 0.510 0.0579 0.690
Had; 0.110 5.040 0.090 5.020

Table 1 : Optical flow errors.

Original Modified
NRMSsg | P10% | NRMSge | P10%
LGsp 0.0353 97,55 0.0754 90,28
TV-LT 0.5493 84,94 0.4662 84,85
Lsk 0.4415 89,07 0.3039 83,16
ORTgr | 0.4678 82,77 0.4999 82,34

Table 2 : Scene flow errors. o {modiiod)
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Experimentation - Kinect images

Depth velocity (V)

LGsr TV-L!
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Experimentation - Kinect images

Image flow ((u, v))

(B) Input images Color code
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Conclusion

@ We proposed a novel approach to compute a dense scene flow
using intensity and depth data.

@ We combine local and global constraints to solve for the 3D
motion field in a variational framework.

@ Unlike previous methods, depth data is used in 3 ways: to model
the motion in the image domain, to constrain the scene flow and to
adapt the TV-regularization.

Current and future work
@ Scene flow descriptors.

@ Improvements: occlusions, large motions, noise.
@ GPU implementation.
@ 3D reconstruction of non-rigid objects.
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The End
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