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Motivation

The scene flow is the 3D motion field of the scene (Vedula ICCV’99).

Surface Flow, Morpheo-INRIA 2011

Applications

Action recognition
Interaction
3D reconstruction
Navigation

Using depth and/or color

RGB-D SLAM Dataset TUM
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Scene flow computation
Stereo or multiview:

From several optical flows (Vedula et al. PAMI’05)

Scene flow

Using structure constraints (Huguet & Devernay ICCV’07, Wedel et al. ECCV’08, Basha et al. CVPR’10)

2 views and optical flow
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Scene flow computation

Color and depth:
Optical flow and range flow under orthography (Spies et al. CVIU’02, Lukins et al. BMVC’04)

Optical flow equation Range flow equation

Photometric constraints (Letouzey BMVC’11)

Projective camera model

Particle filtering (Hadfield&Bowden ICCV’11)

3D motion field
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Our work

Assumptions
Fixed camera

Brightness and depth consistency

Scene composed by locally-rigid moving parts

Approach
Local motion: 2D tracking of 3D surface patches in a LK framework.
Global motion: an adaptive 2D TV-regularization of the 3D motion field.
Large/small motions: multi-scale and a set of 3D correspondences.

Energy

E(v) = ED(v) + αEM(v) + βER(v),

where v = {vX , vY , vZ}.
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Presentation outline

Motion model
Data term
Regularisation term
Sparse matching term
Optimisation
Experimentation
Conclusion
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Motion model

Let X = (X ,Y ,Z ) be a 3D point in the camera frame. The image flow
(u, v) induced by the 3D motion v = {vX , vY , vZ} is given by:

u = x ′ − x =

(
X + vX

Z + vZ
− X

Z

)
=

1
Z

(
vX − xvZ

1 + vZ/Z

)

and

v = y ′ − y =

(
Y + vY

Z + vZ
− Y

Z

)
=

1
Z

(
vY − yvZ

1 + vZ/Z

)
.

where (x , y) = M̂(X) and the new 3D points is X′ = X + v.

Using a Taylor series in the denominator term containing vZ , we get
(

1
1 + vZ/Z

)
=

(
1− vZ

Z
+
(vZ

Z

)2
− ...

)

= f (vZ/Z ) ≈ 1 ∨
(

1− vZ

Z

)
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Motion model
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Data term

Intensity image Depth image

Brightness constancy assumption (BCA)

I2(W(x; v)) = I1(x)

Depth velocity constraint (DVC)

Z2(W(x; v)) = Z1(x) + vZ (x)
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Data term

We solve for the local scene flow vector v that minimizes
∑

{x}

Ψ
(
|ρI (x,v)|2

)
+ λΨ

(
|ρZ (x,v)|2

)
,

where Ψ
(
s2) =

√
s2 + ε2 is a differentiable approx. of the L1 norm.

Using IRLS the scene flow increment is given by

∆v = H−1
∑

{x}

{
−Ψ′

(
ρ2

I (x,v)
)

(∇IJ)T ρI
(
x′,v

)

−λΨ′
(
ρ2

Z (x,v)
)

(∇Z J− (0,0,1))T ρZ
(
x′,v

)}

where the Jacobian is defined as

J =
∂W
∂v

=
1

Z (x)

(
fx 0 cx − x
0 fy cy − y

)
.
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Data term

The matrix H is the Gauss-Newton approximation of the Hessian

H =
∑

{x}

Ψ′ρI

Z 2

(
I2x Ix Iy Ix IΣ

Ix Iy I2y Iy IΣ
Ix IΣ Iy IΣ I2Σ

)
+ λ

Ψ′ρZ

Z 2

(
Z 2

x Zx Zy Zx (ZΣ − 1)

Zx Zy Z 2
y Zy (ZΣ − 1)

Zx (ZΣ − 1) Zy (ZΣ − 1) (ZΣ − 1)2

)

with IΣ = −
(
xIx + yIy

)
and ZΣ = −

(
xZx + yZy

)
.

Final expression

ED (v) =
∑

x

∑

x′∈N(x)

Ψ
(∣∣ρI

(
x′,v (x)

)∣∣2
)

+ λΨ
(∣∣ρZ

(
x′,v (x)

)∣∣2
)

Julian Quiroga (INRIA) Local/Global Scene Flow July 8, 2013 12 / 31



Presentation outline

Motion model
Data term
Regularisation term
Sparse matching term
Optimisation
Experimentation
Conclusion

Julian Quiroga (INRIA) Local/Global Scene Flow July 8, 2013 13 / 31



Regularisation term

The regularization term is given by:

ER(v) =
∑

x

ω(x) |∇v(x)| ,

where we use the notation |∇v| := |∇vX |+ |∇vY |+ |∇vZ |.

The decreasing positive function

ω(x) = exp
(
−α|∇Z1(x)|β

)

prevent regularization of the motion field along strong depth
discontinuities.
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Matching term

Let
{(

x1
1,x

1
2
)
, ...,

(
xN

1 ,x
N
2
)}

be the set of correspondences, the
matching term is defined as

EM (v) =
∑

x

p(x)Ψ
(
|δ3D (x,m(x))− v(x)|2

)

with p(x) = 1 if there is a descriptor in a region around point x.

The matching function m(x) gives the correspondency of each pixel x.

The function δ3D (x1,x2) = M−1
cam (x2Z2(x2)− x1Z1(x1)) computes the

3D displacement for each correspondency.
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Optimization

To compute the scene flow we introduce an auxiliary flow and solve for
the 3D motion field v that minimizes

E(v,u) = ED(v) + αEM(v) +
1
2θ
|v− u|2 + βER(u)

where θ is a small constant.

1 For a fixed v, we solve for u that minimizes
∑

x

1
2κ
|u(x)− v(x)|2 + ω(x) |∇u(x)|

where κ = βθ. For every dimension this problem corresponds to a
weighted version of the ROF model for image denoising.
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Optimization

2 For a fixed u, we solve for v that minimizes

ED(v) + αEM(v) +
∑

x

1
2θ
|v(x)− u(x)|2

The scene flow increment can be computed as

∆v = H−1
∑

x′∈N(x)

{
−Ψ′

(
ρ2

I
(
x′,v

))
(∇IJ)T ρI

(
x′,v

)

−λΨ′
(
ρ2

Z
(
x′,v

))
(∇Z J− D)T ρZ

(
x′,v

)}

+ α p(x)Ψ′
(
ρ2

3D (x,v)
)
ρ3D (x,v) +

1
2θ

(u− v)

where ρ3D is a 3D residue defined as

ρ3D (x,v) = δ3D (x,m(x))− v,

and H is the Gauss-Newton approximation of the Hessian matrix.
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Optimization

The (G-N approximation) of the Hessian matrix is given by

H =
∑

x′∈N(x)

{
Ψ′
(
ρ2

I
(
x′,v

))
(∇IJ)T (∇IJ)

+λΨ′
(
ρ2

Z
(
x′,v

))
(∇Z J− D)T (∇Z J− D)

}

+ α p(x)Ψ′
(
ρ2

3D (x,v)
)

Id +
1
2θ

Id

with Id the 3× 3 identity matrix.
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Experimentation - Middlebury datasets

I1 I2 Z1 ground truth (OF)

Details

Images : Teddy, Cones (2 and 6)

5 levels of PYR decomposition

Window size: 5×5

Error measures

Optical flow: NRMSOF, AAEOF

Scene flow: NRMSV, P10%

Comparisons

LGSF: proposed method

LSF: local scene flow

TV-L1: optical flow + depth

ORTSF: ortographic camera

Hug07: Huguet and Devernay, ICCV 2007

Bas10: Basha et al., CVPR 2010

Had11: Hadfield and Bowden, ICCV 2011
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Experimentation - Middlebury datastes

Teddy Cones
NRMSOF AAE NRMSOF AAE

LGSF 0.0222 0.837 0.0164 0.526
TV-L1 0.0642 1.360 0.0509 0.932

LSF 0.0780 2.288 0.0577 1.991
ORTSF 0.0811 0.866 0.0594 0.963
Bas10 0.0285 1.010 0.0307 0.390
Hug07 0.0621 0.510 0.0579 0.690
Had11 0.110 5.040 0.090 5.020

Table 1 : Optical flow errors.

Original Modified
NRMSSF P10% NRMSSF P10%

LGSF 0.0353 97,55 0.0754 90,28
TV-L1 0.5493 84,94 0.4662 84,85

LSF 0.4415 89,07 0.3039 83,16
ORTSF 0.4678 82,77 0.4999 82,34

Table 2 : Scene flow errors.

I1

I2(modified)
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Experimentation - Kinect images

Depth velocity (VZ )

Input color frames

LSF LGSF TV-L1
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Experimentation - Kinect images

Image flow ((u, v))

(A) Input images (B) Input images Color code

(A) LSF (A) LGSF (A) TV-L1

(B) LSF (B) LGSF (B) TV-L1
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Conclusion

We proposed a novel approach to compute a dense scene flow
using intensity and depth data.
We combine local and global constraints to solve for the 3D
motion field in a variational framework.
Unlike previous methods, depth data is used in 3 ways: to model
the motion in the image domain, to constrain the scene flow and to
adapt the TV-regularization.

Current and future work
Scene flow descriptors.

Improvements: occlusions, large motions, noise.

GPU implementation.

3D reconstruction of non-rigid objects.
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The End
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