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Motivation

Surface Flow, Morpheo-INRIA 2011 Messing et al., ICCV 2009
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Scene flow computation

Stereo or multiview:
@ From several optical flows

@ By using structure constrains and
2D/3D regularization

@ Simultaneously with 3D surface
@ Tracking surfels (surface elements)
Color and depth:

@ Photometric constrains and 3D
regularization

@ Particle filtering in 3D

Hadfield and Bowden, ICCV 2011
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Our work

Approach

Sparse scene flow: we track small surface patches in the scene by
using a pair of aligned intensity and depth images.

Model

To constraint the scene flow in the image domain we assume a scene
composed of rigidly moving 3D parts performing translation.

| A\

By using the scene flow as parameter vector we extend the
Lukas-Kanade approach to exploit both intensity and depth data.

We simultaneously solve for the scene flow and the image flow.
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Presentation outline

@ Lucas-Kanade framework

@ Motion model

@ Locally rigid tracking approach
@ Tracking in intensity and depth
@ Experimentation

@ Conclusion
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Lucas-Kanade Framework

The goal of Lucas-Kanade algorithm is to align a template image T(x)
to an input image /(x). This problem can be stated as

P = arg mPin Z [ (W(x; P)) — T (x)]?

Assuming that an initial estimate of P is known, each optimization step
finds AP which minimizes

2
S UMW P+AP) - TP =) {/(W(x; P)) + v,g‘gAP T (x)

X X

Taking the partial derivative with respect to AP and solving it gives

AP = H1Z<V/)T [ (W(x;P)) — T (x)]

where H=3x (wg—‘{,")r(wg—‘{,").
X
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Motion model

The instantaneous motion of a rigid surface point can be expressed as
X =RX+V,
The 3D motion of the surface generates the image flow given by
U:X/—X:<X_YQZ+ZQY+VX X)fx

Z-XQy+ YO +V, Z
and

Ve oy — Y—XQz—i-ZQ)(—i-Vy Z f
YoV ZIxa, vyt v, Z) Y
Assuming that the inter-frame rotation is negligible , the image flow

induced on a pixel x = (x, y) by the 3D translation of the surface can
be modeled as follows

(5>:;<(1) (1) ;>(€ZY()A(X;V)
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Locally rigid tracking approach

Under brightness constancy assumption, points X at time t — 1 and
X' =X+ V at time t are projected with the same intensity in the image

ft (M (X + V)) e (M(X))

Considering a set of surface points S, the scene flow computation is
stated as finding vector V = { Vx, Vi, Vz} which minimizes

S (M) - (M (X))}2
XeS

The imagen flow of each surface points is given by the warp function
W(x; V) = M(X + V) =x+ A(x; V)

where A(x; V) is the proposed motion model.
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Locally rigid tracking approach

The problem can be formulated in the image domain as follows

= arg min > WX V) = T (X))

{x}es

Solution. Each element of the Jacobian is given by

W 1 (10 —x
N - zx\o 1 —y

Over each iteration the Hessian matrix can be expressed as

Bl
) ) /X/z s R

with Iy = — (xlx + yly).
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Tracking in intensity and depth

Under translation V the depth image must satisfy
ZYM(X + V) = ZY(M(X)) + Vz

Therefore, we propose to formulate the scene flow computation by
constraining V both in the intensity and depth:

S 1HWOGV) — TR + A [Z2 (W) — (T (0 + D7V

{x}es

where A = 0% /0% and D = (0,0, 1) separates the Z component.
Solution.

1 2+ az2 Iely + AZx2Zy Iels + AZx (Zs — 1)
H= E ——] Ily + XZxZ, 12+ 222 Iyls + X2, (Zs — 1)
Z(x hlg +2Zc(Ze = 1) bl +2Z(Z—1) B+ A& 17
{x}

with k- = — (xlk + yly) and Zy = — (xZx + yZy).
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Experimentation - Middlebury datastes

Z

Details Comparisons

@ Images : Teddy, Cones (2 and 6) RT: proposed method (rigid traslation)
RTO: proposed method with A = 0
KLT: KLT by Bouguet (OpenCV)

o
@ 5 leves of PYR decomposition ")
o

@ Image coverage: 85% @ OFg: KLT with a robust norm
o
o
o

@ Window size: 11x11

Hugg7: Huguet and Devernay, ICCV 2007
Bas(: Basha et al., CVPR 2010
Had,;: Hadfield and Bowden, ICCV 2011

Error measures
@ Optical flow: RMSgg, AEEgg, RX
@ Scene flow: NRMSy, RX%
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Experimentation - Middlebury datastes

RT | RT0 | OFz | KLT
RMSor | 251 | 261 | 469 | 5.95 RT | RTO | OFg | KLT
NRMS, | 111 | 550 | 68.4 | 82.0
R1.0 | 12.9 | 14.8 | 28.4 | 401
R5% | 17.1 | 28.8 | 37.9 | 38.1
RS0 | 282 | 399 | 152 | 19.7 R20% 497 | 9.68 | 175 [ 194
AEEor | 1.15 | 1.33 | 156 | 1.45 o : : : :
Table 1: Errors in the optical flow. Table 2: Errors in the scene flow.
RT OF:

Tex | Utex | DD Tex | Utex | DD
RMSor | 499 | 311 | 691 | 575 | 7.20 | 7.05
R1.0 16.5 | 39.8 | 325 | 38.9 | 58.8 | 68.7
NRMSy | 23.2 | 109 | 265 | 96.7 | 202 188
R5% 121 | 28,5 | 251 | 32.0 | 51.5 | 69.6

Table 3: Errors by regions.

RT | Hugy; | Bas;, | Had,
RMSo:(%) | 5.70 | 6.00 | 2.96 | 0.10
AEEqF 2.47 0.60 0.70 5.03

Table 4: Scene flow comparison.
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Experimentation - Kinect images
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Scene flow projection
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Conclusion

@ We have proposed a method to compute a sparse scene flow by
using an aligned pair of intensity and depth images.

@ Modeling the image flow as a function of the 3D motion field with
help from the depth sensor allows the constraint of the scene flow
of a small surface patch in the image domain.

@ Combining intensity and depth data in a Lucas-Kanade framework
we simultaneoulsy solve for the scene flow and image flow.

@ This method is versatile and cand be used to generate more
accurate trajectories or to define scene flow based descriptors.

@ A criterion for selecting good regions to track
@ Experimentation: action and gesture recognition
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The End
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