# Bayesian View Synthesis and Image-Based Rendering Principles



Sergi Pujades<sup>1</sup>, Frédéric Devernay<sup>1</sup>, Bastian Goldluecke<sup>2</sup>

CVPR 2014



2

University of Konstanz





#### Input views





#### Input views

•













Unstructured Lumigraph Rendering C. Buehler et al. - SIGGRAPH 2001

8 Desirable Properties

- Use of geometric proxies
- Unstructured input
- Minimal angular deviation
  - Epipole consistency
  - Equivalent ray consistency
- Resolution sensitivity
- Continuity
- Real-time

Unstructured Lumigraph Rendering C. Buehler et al. - SIGGRAPH 2001

8 Desirable Properties

- Use of geometric proxies
- Unstructured input
- Minimal angular deviation
  - Epipole consistency
  - Equivalent ray consistency
- Resolution sensitivity
- Continuity
- Real-time



#### Input views





#### Input views

•









#### Input views





#### • u Target view

#### Input views





6



6

# State of the art limitations

For both properties:

- Minimal angular deviation
- Resolution sensitivity

#### No formal deduction of heuristics

Solution Manual parameter tuning depending on the scene

### New properties proposed

- Use of geometric proxies
- Unstructured input
- Minimal angular deviation
  - Epipole consistency
  - Equivalent ray consistency
- Resolution sensitivity
- Formal deduction of heuristics
- Physics-based parameters
  - Continuity
  - Real-time

### New properties proposed

- Use of geometric proxies
- Unstructured input
- Minimal angular deviation
  - Epipole consistency
  - Equivalent ray consistency
- Resolution sensitivity
- Formal deduction of heuristics
- Physics-based parameters
  - Continuity
  - Real-time

| Method                                                                            | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|-----------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i> |                                                 |                        |                              |

| Method                                                                                                             | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i>                                  |                                                 |                        |                              |
| <b>Keita Takahashi</b><br>ECCV 2010<br><i>Theory of Optimal View</i><br><i>Interpolation with Depth Inaccuracy</i> |                                                 |                        |                              |

| Method                                                                                               | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i>                    |                                                 |                        |                              |
| <b>Keita Takahashi</b><br>ECCV 2010<br>Theory of Optimal View<br>Interpolation with Depth Inaccuracy |                                                 |                        |                              |

| Method                                                                                                             | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i>                                  |                                                 |                        |                              |
| <b>Keita Takahashi</b><br>ECCV 2010<br><i>Theory of Optimal View</i><br><i>Interpolation with Depth Inaccuracy</i> |                                                 |                        |                              |
| Wanner and Goldluecke<br>ECCV 2012<br>Spatial and Angular Variational<br>Super-resolution of 4D Light Fields       |                                                 |                        |                              |

| Method                                                                                                       | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i>                            |                                                 |                        |                              |
| <b>Keita Takahashi</b><br>ECCV 2010<br>Theory of Optimal View<br>Interpolation with Depth Inaccuracy         |                                                 |                        |                              |
| Wanner and Goldluecke<br>ECCV 2012<br>Spatial and Angular Variational<br>Super-resolution of 4D Light Fields |                                                 |                        |                              |

| Method                                                                                                       | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i>                            |                                                 |                        |                              |
| <b>Keita Takahashi</b><br>ECCV 2010<br>Theory of Optimal View<br>Interpolation with Depth Inaccuracy         |                                                 |                        |                              |
| Wanner and Goldluecke<br>ECCV 2012<br>Spatial and Angular Variational<br>Super-resolution of 4D Light Fields |                                                 |                        |                              |
| Our method<br>CVPR 2014                                                                                      |                                                 |                        |                              |

| Method                                                                                                       | Formal deduction<br>Physics-Based<br>Parameters | Resolution sensitivity | Minimal angular<br>deviation |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------|------------------------------|
| <b>Buehler et al.</b><br>SIGGRAPH 2001<br><i>Unstructured Lumigraph Rendering</i>                            |                                                 |                        |                              |
| <b>Keita Takahashi</b><br>ECCV 2010<br>Theory of Optimal View<br>Interpolation with Depth Inaccuracy         |                                                 |                        |                              |
| Wanner and Goldluecke<br>ECCV 2012<br>Spatial and Angular Variational<br>Super-resolution of 4D Light Fields |                                                 |                        |                              |
| Our method<br>CVPR 2014                                                                                      |                                                 |                        |                              |



INRIA Grenoble, France

CVPR 2014 - 27 June 2014



INRIA Grenoble, France

CVPR 2014 - 27 June 2014



#### Scene Geometry









Perfect image

 $\tilde{v}_i(x) = (u \circ \tilde{\tau}_i)(x)$ 



Perfect image

 $\tilde{v}_i(x) = (u \circ \tilde{\tau}_i)(x)$ 

Generative Model Perfect image formation description



Perfect image

$$\tilde{v}_i(x) = (u \circ \tilde{\tau}_i)(x)$$

Generative Model Perfect image formation description

assuming Lambertian model


Perfect image

 $\tilde{v}_i(x) = (u \circ \tilde{\tau}_i)(x)$ 

INRIA Grenoble, France





INRIA Grenoble, France





![](_page_41_Figure_1.jpeg)

![](_page_42_Figure_1.jpeg)

Spatial and Angular Variational Super-resolution of 4D Light Fields S. Wanner and B. Goldluecke ECCV 2012

$$v_i(x) = \tilde{v}_i(x) + e_s(x)$$

Physics based Resolution sensibility Minimal angular deviation

![](_page_42_Picture_5.jpeg)

![](_page_43_Figure_1.jpeg)

Spatial and Angular Variational Super-resolution of 4D Light Fields S. Wanner and B. Goldluecke ECCV 2012

$$v_i(x) = \tilde{v}_i(x) + e_s(x)$$

Physics based **Resolution sensibility** Minimal angular deviation

![](_page_43_Picture_5.jpeg)

WHY?

#### Scene Geometry

![](_page_44_Picture_2.jpeg)

![](_page_44_Picture_3.jpeg)

INRIA Grenoble, France

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

INRIA Grenoble, France

![](_page_46_Figure_1.jpeg)

INRIA Grenoble, France

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_1.jpeg)

INRIA Grenoble, France

![](_page_49_Figure_1.jpeg)

![](_page_50_Figure_1.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_1.jpeg)

$$\left|\det D\tau_{i}\right|^{-1} \left|\sigma_{z_{i}}^{2}\left(\frac{\partial\left(u\circ\tau_{i}\right)}{\partial z_{i}}\right)^{2}\right|^{-1}$$

![](_page_55_Picture_2.jpeg)

 $\left|\det D\tau_{i}\right|^{-1} \left|\sigma_{z_{i}}^{2}\left(\frac{\partial\left(u\circ\tau_{i}\right)}{\partial z_{i}}\right)^{2}\right|^{-1}$ 

![](_page_56_Picture_2.jpeg)

Minimal angular deviation Physics based Resolution sensitivity

![](_page_57_Picture_1.jpeg)

# $\left(\frac{\partial \left(u\circ au_{i}\right)}{\partial z_{i}}\right)^{2}$ $\sigma^2_{z_i}$ $|det \ D au_i|$ Minimal angular deviation **Physics based Resolution sensitivity** Weighting factor depends on **•** correspondence confidence

 $\frac{(u \circ \tau_i)}{\partial z_i}$ 

#### Weighting factor depends on

![](_page_59_Picture_2.jpeg)

 $|det \ D\tau_i|$ 

**•** correspondence confidence

 $\mathbf{2}$ 

 $\sigma_{z_i}$ 

Minimal angular deviation **Physics based Resolution sensitivity** 

**INRIA** Grenoble, France

 $(u \circ au_i)$ 

#### Weighting factor depends on

![](_page_60_Picture_2.jpeg)

 $|det \ D au_i|$ 

- correspondence confidence
- image content (color gradient along epipolar line)

INRIA Grenoble, France

Minimal angular deviation

**Resolution sensitivity** 

**Physics based** 

### **Experiments**

### Implementation of a simplified camera configuration 4D Light Field

![](_page_61_Picture_2.jpeg)

Stanford multi-camera array

### The (New) Stanford Light Field Archive

#### Tarot

#### Truck

![](_page_62_Picture_3.jpeg)

# HCI Lightfield Dataset

### Maria

### Still Life

![](_page_63_Picture_3.jpeg)

![](_page_63_Picture_4.jpeg)

![](_page_64_Picture_0.jpeg)

![](_page_65_Picture_0.jpeg)

### Results

### Ground truth

### Previous method

Wanner and Goldluecke ECCV 2012

![](_page_65_Picture_5.jpeg)

![](_page_65_Picture_6.jpeg)

![](_page_66_Picture_0.jpeg)

### Results

### Ground truth

### Previous method

Wanner and Goldluecke ECCV 2012

![](_page_66_Picture_5.jpeg)

![](_page_66_Picture_6.jpeg)

![](_page_67_Picture_0.jpeg)

### Results

### Ground truth

#### Previous method

#### Wanner and Goldluecke ECCV 2012

#### Proposed method

![](_page_67_Picture_6.jpeg)

![](_page_67_Picture_7.jpeg)

![](_page_67_Picture_8.jpeg)

Better selection of the contributing views based on :

View distance

color gradient aligned with view displacement

![](_page_68_Picture_4.jpeg)

Better selection of the contributing views based on :

View distance

color gradient aligned with view displacement

![](_page_69_Figure_4.jpeg)

Better selection of the contributing views based on :

View distance

color gradient aligned with view displacement

![](_page_70_Figure_4.jpeg)

Better selection of the contributing views based on :

- View distance
- color gradient aligned with view displacement

![](_page_71_Picture_4.jpeg)
# What is happening?

Better selection of the contributing views based on :

View distance

color gradient aligned with view displacement



# What is happening?

Better selection of the contributing views based on :

View distance

color gradient aligned with view displacement





## Results

#### Ground truth

#### Previous method

#### Wanner and Goldluecke ECCV 2012

#### Proposed method







## Status and future work

- Use of geometric proxies
- Unstructured input
- Epipole consistency
- Equivalent ray consistency
- Minimal angular deviation
- Resolution sensitivity
- Formal deduction
- Physics-based parameters
- Continuity
- Real-time



## Status and future work

- Use of geometric proxies
- Unstructured input
- Epipole consistency
- Equivalent ray consistency
- Minimal angular deviation
- Resolution sensitivity
- Formal deduction
- Physics-based parameters
- Continuity
- Real-time



## Conclusion

New generative model for IBR

Unify current knowledge

Improve results

Code available as part of **cocolib** library

http://sourceforge.net/projects/cocolib/

## Take home messages

Bayesian formulation: Use physically-sound parameters!

Uncertainty is helpful: Don't throw away your covariance matrices!

# Bayesian View Synthesis and Image-Based Rendering Principles



Sergi Pujades<sup>1</sup>, Frédéric Devernay<sup>1</sup>, Bastian Goldluecke<sup>2</sup>

**CVPR 2014** 



2

University of Konstanz



