Towards endoscopic augmented reality for robotically assisted minimally invasive cardiac surgery

Frédéric Devernay,
Fabien Mourgues, Ève Coste-Manière
CHIR team, INRIA Sophia Antipolis
www.inria.fr/chir

Robotically assisted cardiac surgery

Precision, dexterity, but...

Incision sites must be carefully chosen/computed

No force feedback (yet)

Reduced field of view

Augmented reality for cardiac surgery

3D+t coronary tree model

n sequences, different incidences

Image sequence

Semiinteractive drawing

2D tracking

Stereoscopy on synchronous images

2D artery segmentation

- · Various sizes, multiple moving objects
- Model-based multi-scale analysis

Segmenting and tracking 2D coronaries

- Semi-interactive drawing on one frame, based on dynamic programming (intelligent scissors)
- 3-Step tracking from image n to n+1:
 - prediction from n-1 to n motion
 - affine snake based on multi-scale energy (global deformation)
 - B-spline snake (local deformations)

Position at image n-1
affine prediction
affine snake result
B-snake result

3D+t coronary tree reconstruction

- Non-simultaneous stereoscopy
- Matching by dynamic programming, with "weak" epipolar constraint
- Bundle adjustment to compensate global translation

3D+t reconstruction 3D reconstruction

Full 3D+t heart model

- Register 3D coronaries with 3D heart surface from CT-scan or MRI
- Compute heart motion from 3D+t coronaries
- Apply this motion to 3D heart surface to "animate" it
- Work in progress...

Endoscopic stereoscopy

- Calibration
 - off-line (using calibration grid)
 - during operation: self-calibration
- Tracking
 - stereo tracking of feature points
 - motion+structure from motion
- Correlation-based stereo
 - parallel implementation

Foreground/background classification

- Necessary to separate organ surface from instruments <u>full background</u>
- Using z (from disparity) and color
- Enables "diminished reality"
- 3D mosaic, using tracked points

Augmented reality

- Registration between stereoscopy and 3D(+t) heart model
- Video-rate overlay, using robot articular coordinates for endoscope motion, and ECG for heart motion
- Update position parameters whenever a registration result is signaled
- Software integration & real-time issues

Conclusions

- One particular application generated many sub-problems:
 - 3D+t heart modeling
 - Stereoscopy & registration from endoscopic views
 - Integration, real-time issues
- Application-driven but generic algorithms

