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Straight lines have to be straight
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Abstract. Most algorithms in 3D computer vision rely on
the pinhole camera model because of its simplicity, whereas
video optics, especially low-cost wide-angle or fish-eye
lenses, generate a lot of non-linear distortion which can be
critical. To find the distortion parameters of a camera, we
use the following fundamental property: a camera follows
the pinhole model if and only if the projection of every line
in space onto the camera is a line. Consequently, if we find
the transformation on the video image so that every line in
space is viewed in the transformed image as a line, then we
know how to remove the distortion from the image. The al-
gorithm consists of first doing edge extraction on a possibly
distorted video sequence, then doing polygonal approxima-
tion with a large tolerance on these edges to extract possible
lines from the sequence, and then finding the parameters
of our distortion model that best transform these edges to
segments. Results are presented on real video images, com-
pared with distortion calibration obtained by a full camera
calibration method which uses a calibration grid.

Key words: Camera calibration – Nonlinear distortion –
Self-calibration – Camera models

1 Introduction

1.1 External, internal, and distortion calibration

In the context of 3D computer vision, camera calibration
consists of finding the mapping between the 3D space and
the camera plane. This mapping can be separated in two
different transformations: first, the displacement between the
origin of 3D space and the camera coordinate system, which
forms the external calibration parameters (3D rotation and
translation), and second the mapping between 3D points in
space and 2D points on the camera plane in the camera co-
ordinate system, which forms the internal camera calibration
parameters.

The internal camera calibration parameters depend on
the camera. In the case of an orthographic or affine camera
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model, optic rays are all parallel and there are only three pa-
rameters corresponding to the spatial sampling of the image
plane. The perspective (or projective) camera model involves
two more camera parameters corresponding to the position
of the principal point in the image (which is the intersection
of the optical axis with the image plane). For many appli-
cations which require high accuracy, or in cases where low-
cost or wide-angle lenses are used, the perspective model is
not sufficient and more internal calibration parameters must
be added to take into account camera lens distortion.

The distortion parameters are most often coupled with
internal camera parameters, but we can also use a camera
model in which they are decoupled. Decoupling the distor-
tion parameters from others can be equivalent to adding more
degrees of freedom to the camera model.

1.2 Brief summary of existing related work

Here is an overview of the different kinds of calibration
methods available. The goal of this section is not to give an
extensive review, and the reader can find more information
in [3, 18, 23].

The first kind of calibration method is the one that uses
a calibration grid with feature points whose world 3D coor-
dinates are known. These feature points, often called control
points, can be corners, dots, or any features that can be eas-
ily extracted for computer images. Once the control points
are identified in the image, the calibration method finds the
best camera-external (rotation and translation) and -internal
(image aspect ratio, focal length, and possibly others) pa-
rameters that correspond to the position of these points in
the image. The simplest form of camera-internal parameters
is the standard pinhole camera [13], but in many cases the
distortion due to wide-angle or low-quality lenses has to be
taken into account [27, 3]. When the lens has a nonnegli-
gible distortion, using a calibration method with a pinhole
camera model may result in high calibration errors.

The problem with these methods that compute the exter-
nal and internal parameters at the same time arises from the
fact that there is some kind of coupling between internal and
external parameters that results in high errors on the camera
internal parameters [28].
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Another family of methods are those that use geometric
invariants of the image features rather than their world co-
ordinates, like parallel lines [6, 2] or the image of a sphere
[19].

The last kind of calibration techniques are those that do
not need any kind of known calibration points. These are
also called self-calibration methods, and the problem with
these methods is that if all the parameters of the camera
are unknown, they are still very unstable [12]. Known cam-
era motion helps in getting more stable and accurate results
[25, 15] but it is not always that easy to get “pure camera
rotation”.

A few other calibration methods deal only with distortion
calibration, like the plumb line method [5]. Another method
presented in [4] uses a calibration grid to find a generic
distortion function, represented as a 2D vector field.

1.3 Overview of our method

Since many self-calibration [12] or weak-calibration [30]
techniques rely on a pinhole (i.e., perspective) camera model,
our main idea was to calibrate only the image distortion, so
that any camera could be considered as a pinhole camera
after the application of the inverse of the distortion func-
tion to image features. We also do not want to rely on a
particular camera motion [25] in order to be able to work
on any kind of video recordings or snapshots (e.g. surveil-
lance video recordings) for which there can be only little
knowledge on self-motion, or some observed objects may
be moving.

The only constraint is that the world seen though the
camera must contain 3D lines and segments. It can be city
scenes, interior scenes, or aerial views containing buildings
and man-made structures. Edge extraction and polygonal ap-
proximation is performed on these images in order to detect
possible 3D edges present in the scene, then we look for the
distortion parameters that minimize the curvature of the 3D
segments projected to the image.

After we find a first estimate of the distortion param-
eters, we perform another polygonal approximation on the
corrected (undistorted) edges, this way straight line segments
that were broken into several line segments because of dis-
tortion become one single line segment, and outliers (curves
that were detected as line segments because of their small
curvature) are implicitly eliminated. We continue this iter-
ative process until we fall into a stable minimum of the
distortion error after the polygonal approximation step.

In Sect. 2, we review the different nonlinear distortion
models available, including polynomial and fish-eye mod-
els, and the whole calibration process is fully described in
Sect. 3.

2 The nonlinear distortion model

The mapping between 3D points and 2D image points can
be decomposed into a perspective projection and a function
that models the deviations from the ideal pinhole camera.
A perspective projection associated with the focal lengthf

maps a 3D pointM whose coordinates in the camera-cen-
tered coordinate system are (X,Y, Z) to an “undistorted”
image pointmu = (xu, yu) on the image plane:

xu = f
X

Z
,

yu = f
Y

Z
. (1)

Then, the image distortion transformsmu to a distorted im-
age pointmd. The image distortion model [23] is usually
given as a mapping from the distorted image coordinates,
which are observable in the acquired images, to the undis-
torted image coordinates, which are needed for further cal-
culations. The image distortion function can be decomposed
in two terms: radial and tangential distortion. Radial distor-
tion is a deformation of the image along the direction from a
point called the center of distortion to the considered image
point, and tangential distortion is a deformation perpendic-
ular to this direction. The center of distortion is invariant
under both transformations.

It was found that for many machine vision applications,
tangential distortion need not to be considered [27]. LetR
be the radial distortion function, which is invertible over the
image:

R : ru −→ rd = R(ru),with
∂R

∂ru
(0) = 1. (2)

The distortion model can be written as

xu = xd
R−1(rd)

rd
, yd = yd

R−1(rd)
rd

, (3)

whererd =
√
x2

d + y2
d, and similarly the inverse distortion

model is:

xd = xu
R(ru)
ru

, yd = yu
R(ru)
ru

, (4)

whereru =
√
x2

u + y2
u.

Finally, distorted image plane coordinates are converted
to frame buffer coordinates, which can be expressed either
in pixels or in normalized coordinates (i.e., pixels divided
by image dimensions), depending on the unit off :

xi = Sxxd +Cx ,

yi = yd +Cy , (5)

where (Cx, Cy) are the image coordinates of the principal
point andSx is the image aspect ratio.

In our case, we want to decouple the effect of distortion
from the projection on the image plane, because we want
to calibrate the distortion without knowing anything about
internal camera parameters. Consequently, in our model, the
center of distortion (cx, cy) will be different from the princi-
pal point (Cx, Cy). It has been shown [24] that this is mainly
equivalent to adding decentering distortion terms to the dis-
tortion model of Eq. 6. A higher order effect of this is to
apply an (very small) affine transformation to the image, but
the affine transform of a pinhole camera is also a pinhole
camera (i.e., this is a linear distortion effect).
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Moreover, the image aspect ratiosx that we use in the
distortion model may not be the same as the real camera
aspect ratioSx. The difference between these two aspect
ratios will result in another term of tangential distortion. To
summarize, the difference between the coordinates of the
center of distortion (cx, cy) and those of the principal point
(Cx, Cy) corresponds to decentering distortion because these
may be different, and the difference between the distortion
aspect ratiosx and the camera aspect ratioSx corresponds
to a term of tangential distortion.

In the following, all coordinates are frame buffer coordi-
nates, either expressed in pixels or normalized (by dividing
x by the image width andy by the image height) to be
unit-less.

2.1 Polynomial distortion models

The lens distortion model (Eq. 3) can be written as an infinite
series:

xu = xd(1 +κ1r
2
d + κ2r

4
d + · · · ) ,

yu = yd(1 +κ1r
2
d + κ2r

4
d + · · · ) . (6)

Several tests [3, 27] showed that, using only the first-order
radial symmetric distortion parameterκ1, one could achieve
an accuracy of about 0.1 pixels in image space using lenses
exhibiting large distortion, together with the other parameters
of the perspective camera [13].

The undistorted coordinates are given by the formula:

xu = xd(1 +κ1r
2
d) ,

yu = yd(1 +κ1r
2
d) , (7)

whererd =
√
x2

d + y2
d is the distorted radius.

The inverse distortion model is obtained by solving the
following equation forrd, given ru:

ru = rd

(
1 +κ1r

2
d

)
, (8)

whereru =
√
x2

u + y2
u is the undistorted radius andrd is the

distorted radius.
This is a polynomial of degree three inrd of the form

r3
d + crd + d = 0, with c = 1

κ1
andd = −cru, which can be

solved using the Cardan method, which is a direct method for
solving polynomials of degree three. It has either one or three
real solutions, depending on the sign of the discriminant:

∆ = Q3 +R2 ,

whereQ = c
3 andR = −d

2 .
If ∆ > 0, there is only one real solution:

rd =
3

√
R +

√
∆ +

Q
3
√
R +

√
∆
, (9)

and if ∆ < 0, there are three real solutions, but only one
is valid because whenru is fixed, rd must be a continuous
function ofκ1. The continuity atκ1 = 0 gives the solution:

rd = −S cosT + S
√

3 sinT , (10)

whereS =
3
√√

R2 −∆ andT = 1
3 arctan

√−∆
R

Combining Eqs. 7 and 8, the distorted coordinates are
given by:

xd = xu
rd

ru
,

yd = yu
rd

ru
. (11)

With high-distortion lenses, it may be necessary to in-
clude higher order terms of Eq. 6 in the distortion model
[17]. In this case, the transformation from undistorted to
distorted coordinates has no closed-form solution, and a line
solver has to be used (a simple Newton method is enough).

In the case of fish-eye and other high-distortion lenses,
nonlinear distortion was built-in on purpose, in order to cor-
rect deficiencies of wide-angle distortion-free lenses, such
as the fact that objets near the border of the field-of-view
have an exagerated size on the image. To model the distor-
tion of these lenses, it may be necessary to take into account
many terms of Eq. 6: in our experience, distortion models of
the order of at least 3 (which correspond to a seventh-order
polynomial for radial distortion) had to be used to com-
pensate for the nonlinear distortion of fish-eye lenses. For
this reason, we looked for distortion models which are more
suitable to this kind of lens.

2.2 Fish-eye models

Fish-eye lenses are designed basically to include some kind
of nonlinear distortion. For this reason, it is better to use a
distortion model that tries to mimic this effect, rather than
to use a high number of terms in the series of Eq. 6. Shah
and Aggarwal [22] showed that when calibrating a fish-eye
lens using a seventh-order odd-powered polynomial for ra-
dial distortion (which corresponds to a third-order distortion
model), distortion still remains, so that they had to use a
model with even more degrees of freedom.

Basu and Licardie [1] used a logarithmic distortion
model (FET, or Fish-Eye Transform) or a polynomial distor-
tion model (PFET) to model fish-eye lenses; and the PFET
model seems to perform better than the FET. The FET model
is based on the observation that fish-eyes have a high reso-
lution at the fovea, and a nonlinearly decreasing resolution
towards the periphery. The corresponding radial distortion
function is

rd = R(ru) = s log (1 +λru) . (12)

We propose here another distortion model for fish-eye
lenses, which is based on the way fish-eye lenses are de-
signed. The distance between an image point and the prin-
cipal point is usually roughly proportional to the angle be-
tween the corresponding 3D point, the optical center, and
the optical axis (Fig. 1), so that the angular resolution is
roughly proportional to the image resolution along an image
radius. This model has only one parameter, which is the field
of view ω of the correspondingideal fish-eye lens, so we
called it the FOV model. This angle may not correspond to
the real camera field of view, since the fish-eye optics may
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Fig. 1. In the FOV distortion model, the distancecm is proportional to the
angle between (CM ) and the optical axis (Cz)

not follow exactly this model. The corresponding distortion
function and its inverse are

rd =
1
ω

arctan
(

2ru tan
ω

2

)
(13)

and ru =
tan(rdω)
2 tanω

2

. (14)

If this one-parameter model is not sufficient to model the
complex distortion of fish-eye lenses, the previous distortion
model (Eq. 6) can be applied before Eq. 14, withκ1 = 0
(ω, as a first-order distortion parameter, would be redundant
with κ1). A second-order FOV model will haveκ2 /= 0, and
a third-order FOV model will haveκ3 /= 0.

2.3 Inverse models

Using the models described, the cheapest transformation in
terms of calculation is from the the distorted coordinates to
undistorted coordinates. This also means that it is cheaper to
detect features in the distorted image and to undistort them,
than to undistort the whole image and to extract the feature
from the undistorted image: in fact, undistorting a whole
image consists of computing the distorted coordinates of ev-
ery point in the undistorted image (which requires solving
a third-degree polynomial – for the first-order model – or
more complicated equations), and then computing its inten-
sity value by bilinear interpolation in the original distorted
image.

For some algorithms or feature detection methods which
depend on linear perspective projection images, one must
nevertheless undistort the whole image. A typical example
is stereo by correlation, which requires an accurate rectifica-
tion of images. In these cases, where calibration time may
not be crucial but images need to be undistorted quickly
(i.e., only the transform function from undistorted to dis-
torted coordinated is to be used more often than its inverse
in a program’s main loop), a good solution is to switch the
distortion function and its inverse. For the first-order distor-
tion model, Eq. 7 would become the distortion function and

Eq. 11 its inverse. This is what we call an order−1 poly-
nomial model in this paper. Thus, the automatic distortion
calibration step is costly (because, as we will see later, it
requires undistorting edge features), but once the camera is
calibrated, the undistortion of the whole intensity image is
much faster.

The inverse model can be derived from polynomial mod-
els, fish-eye models, FOV model, or any distortion model.
Though they have the same number of parameters as their
direct counterpart, we will see Sect. 5.4 that they do not rep-
resent the same kind of distortion, and may not be able to
deal with a given lens distortion.

3 Distortion calibration

3.1 Principle of distortion calibration

The goal of the distortion calibration is to find the trans-
formation (or undistortion) that maps the actual camera im-
age plane onto an image following the perspective camera
model. To find the distortion parameters described in Sect. 2,
we use the following fundamental property: a camera follows
the perspective camera model if and only if the projection
of every 3D line in space onto the camera plane is a line.
Consequently, all we need is a way to find projections of 3D
lines in the image (they are not lines anymore in the images,
since they are distorted, but curves), and a way to measure
how much each 3D line is distorted in the image. Then we
will just have to let the distortion parameters vary, and try
to minimize the distortion of edges transformed using these
parameters.

3.2 Edge detection with sub-pixel accuracy

The first step of the calibration consists of extracting edges
from the images. Since image distortion is sometimes less
than a pixel at image boundaries, there is definitely a need
for an edge detection method with a sub-pixel accuracy.
We developed an edge detection method [11], which is a
sub-pixel refinement of the classic nonmaxima suppression
(NMS) of the gradient norm in the direction of the gradient.
It was shown to give edge position with a precision varying
from 0.05 pixel RMS for a noise-free synthetic image, to
0.3 pixel RMS for an image signal-to-noise ratio (SNR) of
18 dB (which is actually a lot of noise, the VHS videotapes
SNR is about 50 dB). In practice, any edge detection method
with sub-pixel accuracy can be used.

3.3 Finding 3D segments in a distorted image

In order to calibrate distortion, we must find edges in the
image which are most probably images of 3D segments. The
goal is not to get all segments, but to find the most probable
ones. For this reason, we do not care if a long segment,
because of its distortion, is broken into smaller segments.

Therefore, and because we are using a sub-pixel edge
detection method, we use a very small tolerance for polyg-
onal approximation: the maximum distance between edge
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φ
least squares line fit

distortion error

detected edge segment

Fig. 2. The distortion error is the sum of squares of the distances from the
edgels of an edge segment to the least square fit of a line to these edgels

points and the segment joining both ends of the edge must
typically be less than 0.4 pixel. We also put a threshold on
segment length of about 60 pixels for a 640× 480 image,
because small segments may contain more noise than useful
information about distortion.

Moreover, because of the corner-rounding effect [8, 9]
due to edge detection, we throw out a few edgels (between
three and five, depending on the amount of smoothing per-
formed on the image before edge detection) at both ends of
each detected edge segment.

3.4 Measuring distortion of a 3D segment in the image

In order to find the distortion parameters we use a measure of
how much each detected segment is distorted. This distortion
measure will then be minimized to find the best calibration
parameters. One could use, for example, the mean curvature
of the edges, or any distance function on the edge space
that would be zero if the edge is a perfect segment and the
more the segment would be distorted, the bigger the distance
would be.

We chose a simple measure of distortion, which consists
of doing a least squares approximation of each edge which
should be a projection of a 3D segment by a line [10], and
to take for the distortion error the sum of squares of the
distances from the point to the line (i.e., theχ2 of the least
square approximation, Fig. 2). Thus, the error is zero if the
edge lies exactly on a line, and the bigger the curvature of
the edge, the bigger the distortion error.

This leads to the following expression for the distortion
error of each edge segment [10]:

χ2 = a sin2φ− 2 |b| |sinφ| cosφ + c cos2φ , (15)

where

a =
n∑

j=1

x2
j − 1

n


 n∑

j=1

xj




2

, (16)

b =
n∑

j=1

xjyj − 1
n

n∑
j=1

xj

n∑
j=1

yj , (17)

c =
n∑

j=1

y2
j − 1

n


 n∑

j=1

yj




2

, (18)

α = a− c; β =
α

2
√
α2 + 4b2

, (19)

|sinφ| =
√

1/2 − β; cosφ =
√

1/2 +β . (20)

φ is the angle of the line in the image, and sinφ should
have the same sign asb. φ can also be computed asφ =
1/2 arctan 2(2b, a− c), but only sinφ and cosφ are useful to
computeχ2.

3.5 Putting it all together: the whole calibration process

The whole distortion calibration process is not done in a sin-
gle step (edge detection, polygonal approximation, and op-
timization), because there may be outliers in the segments
detected by the polygonal approximation, i.e., segment edges
which do not really correspond to 3D line segments. More-
over, some images of 3D line segments may be broken into
smaller edges because the first polygonal approximation is
done on distorted edges. By doing another polygonal ap-
proximation after the optimization, on undistorted edges, we
can eliminate many outliers easily and sometimes get longer
segments which contain more information about distortion.
This way, we get even more accurate calibration parameters.

A first version of the distortion calibration process is:

1. Load or acquire a set of images.
2. Do sub-pixel edge detection and linking on all the images

in the collection. The result is the set of linked edges of
all images.

3. Initialize the distortion parameters with reasonable val-
ues.

4. Do polygonal approximation on undistorted edges to ex-
tract segment candidates.

5. Compute the distortion errorE0 =
∑

χ2 (sum is done
over all the detected segments).

6. Optimize the distortion parametersκ1, cx, cy, sx to min-
imize the total distortion error. The total distortion error
is taken as the sum of the distortion errors (Eq. 15) of all
detected line segments, and is optimized using a nonlin-
ear least-squares minimization method (e.g., Levenberg-
Marquart).

7. Compute the distortion errorE1 for the optimized pa-
rameters.

8. If the relative change of errorE0−E1
E1

is less than a thresh-
old, stop here.

9. Update the distortion parameters with the optimized val-
ues.

10. Go to step 4.

By minimizing on all the parameters when the data still
contains many outliers, there is a risk of getting farther from
the optimal parameters. For this reason, steps 3–9 are first
done with optimization only on the first radial distortion
parameter (κ1 for polynomial models,ω for FOV models)
until the termination condition of step 8 is verified, then
cx and cy are added, and finally full optimization on the
distortion parameters (includingsx) is performed. During
the process, polygonal approximation (step 4) progressively
eliminates most outliers.

Of course, the success of the whole process depends on
the number, length, and accuracy of the line segments de-
tected in the images. Moreover, the segments should be have
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various positions and orientations in the image, in order to
avoid singular or almost singular situations. For example,
one cannot compute radial distortion if all straight lines sup-
porting the detected segments go through a single point in
the image. Fortunately, data is cheap in our case, since get-
ting more line segments usually involves only moving the
camera and taking more pictures. Instead of analyzing how
the number, length, and accuracy of the detected segments
influence the stability and accuracy of the algorithm, we
judged that there was enough data if adding more data (i.e.,
more pictures) would not change the results significantly.
A more in-depth study on what minimum data is necessary
for the calibration would be useful, especially in situations
where “getting more data” is a problem.

4 Model selection

We have shown that several models can be used to describe
a lens’ nonlinear distortion: polynomial distortion models
(Eq. 6) with differents orders (first order uses onlyκ1, second
order κ1 and κ2, etc.), fish-eye models such as the FET
model (Eq. 12) or the FOV model (Eq. 14) with different
orders (first order uses onlyω, second order is the application
of a first-order polynomial model before Eq. 14, etc.), but
then arises the problem of chosing the right model for a
given lens.

4.1 Probabilistic approach

The easiest way of chosing the model that best describes
some data, based on probability theory, is to take the one
that gives the lowest residuals. This usually leads to picking
the model with the biggest number of parameters, since in-
creasing the number of parameters usually lowers the resid-
uals (an extreme case is when there are as many parameters
as residuals, and the residuals can be zero). In the experi-
mental setup we used, the models have a reduced number of
parameters (at most six for order three models), and we can
get as much data as we want (data are edges in our case),
simply by acquiring more images with the same lens (the
scene need not to be different for each image, moving the
camera around is enough). For a given kind of model (e.g.,
polynomial), this method will almost always pick the model
with the highest number of parameters, but we will still be
able to say, between two different kinds of models with a
given number of parameters, for example, a third-order poly-
nomial model and a third-order FOV model, which one is
best. We will also be able to state how much more accuracy
we get by adding one order to a given model.

4.2 MDL et al.

When the number of images is limited, or the camera is fixed
(e.g., a surveillance camera), a smarter selection method
should be used. A proper model selection method would be
based on the fact that the model that best describes the data
leads to the shortest encoding (or description, in the informa-
tion theory sense) of the model and the data. This principle

is calledminimum description length (MDL) [20, 14], and is
now widely used in computer vision. The MDL principle, or
other model selection methods based on information theory
[26, 16] require a fine analysis of the properties of the data
and the model, which are beyond the scope of this paper.

When the amount of data (edges in our case) increases,
these approaches become asymptotically equivalent to the
probabilistic method, because almost all information is con-
tained in the data. A different way of understanding this
is that in the ideal case where we have an infinite number
of data with unbiased noise, the best model will always be
the one that gives the lowest residuals, whereas with only
a few data, the model that gives the lowest residuals may
fit the noise instead of the data itself. For this reason, we
used the simpler probabilistic method in our experiments,
because we can get as much data as we want, just by using
edges extracted from additional images taken with the same
lens.

4.3 Conversion between distortion models

Suppose we have selected the distortion model that best fits
our lens, then we may want to know how much accuracy
is lost, in terms of pixel displacement, when using another
model instead of this one. Similarly, if two models seem
to perform equally with respect to our distortion calibration
method, one may want to be able to measure howgeometri-
cally different these models are. To answer these questions,
we developed a conversion method that picks within a dis-
tortion model family the one that most resembles a given
model from another family, and also measures how differ-
ent these models are.

One way to measure how close distortion modelA with
parameterspA is to distortion modelB is to try to convert the
parameter set describing the first model to a parameter setpB

describing the second model. Because the two models belong
to different families of transformations, this conversion is
generally not possible, but we propose the following method
to get the parameter setpB of modelB which gives the best
approximation of modelA(pA) in the least square sense.

The parameter setpB is chosen so that the distorted im-
age is undistorted “the same way” byA(pA) and B(pB).
“The same way” means that there is at most a nondistort-
ing transformation between the set of points undistorted by
A(pA) and the set of points undistorted byB(pB). We define
a nondistorting transformation as being linear in projective
coordinates. The most general nondistorting transformation
is a homography, so we are looking for parameterspB and
a homographyH so that the image undistorted byB(pB)
and transformed byH is as close as possible to the image
undistorted byA(pA).

Let us consider an infinite set of points{mi} uniformly
distributed on the distorted image, let{mA

i } be these points
undistorted usingA(pA), and let{mB

i } be the same points
undistorted byB(pB). We measure the closeness1 from

1 This measure is not a distance, sinceC(A(pA), B(pB)) /=
C(B(pB), A(pA)). A distance derived fromC is C′(A(pA), B(pB)) =√
C2(A(pA), B(pB)) +C(B(pB), A(pA)), but our measure reflects the

fact that “finding the best parameterspB for modelB to fit modelA(pA)”
is a nonsymmetric process.
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A(pA) to B(pB) as

C(A(pA), B(pB))

=

√
inf
H

lim
i→∞

1
i

∑
i

∣∣mA
i −H(mB

i )
∣∣2
. (21)

The conversion fromA(pA) to model B is simply
achieved by computingpB (andH) that minimize 21, i.e.,
pB = arg infpB

C(A(pA), B(pB)). In practice, of course, we
use a finite number of uniformly distributed points (e.g.,
100× 100).

C(A(pA), B(pB)) is the mean residual error in image
coordinate units, and measures how good modelB fits to
A(pA). This can be used, ifB has less parameters thanA,
to check ifB(pB) is good enough to represent the distortion
yielded byA(pA). An example is shown on fish-eye lens in
Sect. 5.4.

5 Results and comparison with a full calibration method

5.1 Experimental setup

We used various hardware setups to test the accuracy of the
distortion calibration, from low-cost video-conference video
hardware to high-quality cameras and frame grabbers.

The lowest quality hardware is a very simple video ac-
quisition system included with every Silicon Graphics Indy
workstation. This system is not designed for accuracy nor
quality and consists of an IndyCam camera coupled with
the standard Vino frame grabber. The acquired image is
640× 480 pixels interlaced, and contains a lot of distor-
tion and blur caused by the cheap wide-angle lens. The use
of an online camera allows very fast image transfer between
the frame grabber and the program memory using direct
memory access (DMA), so that we are able to do fast dis-
tortion calibration. The quality of the whole system seems
comparable to that of a VHS videotape.

Other images were acquired using an Imaging Technolo-
gies acquisition board together with several different camera
setups: a Sony XC75CE camera with 8-mm, 12.5-mm, and
16-mm lens (the smaller the focal length, the more important
the distortion), and an old Pulnix TM-46 camera with 8-mm
lens. The fish-eye images come from a custom underwater
camera2

The distortion calibration software is a stand-alone pro-
gram that can either work on images acquired online using a
camera and a frame grabber or acquired offline and saved to
disk. Image gradient was computed using a recursive Gaus-
sian filter [7], and subsequent edge detection was done by
NMS.

The optimization step was performed using the sub-
routinelmdif from MINPACK or the sub-routinednls1
from SLATEC, both packages being available from Netlib.

2 Thanks go to J. Ḿenìere and C. Migliorini from Poseidon, Paris, who
use these cameras for swimming-pool monitoring, for letting me use these
images.

5.2 The full calibration method

In order to evaluate the validity of the distortion parame-
ters obtained by our method, we compared them to those
obtained by a method for full calibration (both external and
internal) that incorporates comparable distortion parameters.
The software we used to do full calibration implements the
Tsai calibration method [27] and is freely available. This
software implements calibration of external (rotation and
translation) and internal camera parameters at the same time.
The internal parameter set is composed of the pinhole cam-
era parameters, except for the shear parameter (which is very
close to zero on CCD cameras anyway [3]), and of the first
radial distortion parameter. From the result of this calibra-
tion mechanism, we can extract the position of the principal
point, the image aspect ratio, and the first radial distortion
parameter.

As seen in Sect. 2, though, these are not exactly the same
parameters as those that we can compute using our method,
since we allow more degrees of freedom for the distortion
function: two more parameters of decentering distortion and
one parameter of tangential distortion, having different co-
ordinates for the principal point and the center of distor-
tion, and for the image aspect ratio and distortion aspect
ratio. There are two ways of comparing the results of the
two methods: one is to compute the closeness (defined in
Sect. 4.3) between the two sets of parameters by computing
the best homography between two sets of undistorted points,
the other is to convert the radial distortion parameter found
by Tsai calibration using the distortion center and aspect
ratio found by our method, and vice versa.

5.3 Results

We calibrated a set of cameras using the Tsai method and a
calibration grid (Fig. 3) with 128 points, and we computed
the distortion parameters from the result of this full calibra-
tion method (Table 2) (camera E could not be calibrated this
way, because the automatic feature extraction used before
Tsai calibration did not work on these images). The distor-
tion calibration method was also applied to sets of about 30
images (see Fig. 4) for each camera/lens combination, and
the results for the four parameters of distortion are shown
in Table 1. For each set of images, the edges extracted from
all the images are used for calibration. The initial values for
the distortion parameters before the optimization were set to
“reasonable” values, i.e., the center of distortion was set to
the center of the image,κ1 was set to zero, andsx to the
image aspect ratio, computed for the camera specifications.
For the IndyCam, this gavecx = cy = 1

2, κ1 = 0, andsx = 3
4.

All the parameters and results are given in normalized
coordinates and are dimensionless:x is divided by the im-
age width andy by the image height, thus (x, y) ∈ [0,1]2.
This way, we are able to measure and compare the effect of
the lens, and we are as independent as possible of the frame
grabber (the results presented here were obtained using var-
ious frame grabbers).

As explained in Sect. 2, these have not exactly the same
meaning as the distortion parameters obtained from Tsai cal-
ibration, mainly because in this model the distortion center
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Fig. 3. The calibration grid used for Tsai calibration: original distorted
image (top) and image undistorted using the parameters computed by our
method (bottom)

is the same as the optical center, and also because we in-
troduced a few more degrees of freedom in the distortion
function, allowing decentering and tangential distortion. This
explains why the distortion center found on low-distortion
cameras such as the Sony, 16 mm are so far away from the
principal point.

The four bottom lines of Table 1 may need some more
explanations.C0 is the closeness between the computed
distortion model and a zero-distortion camera model (i.e.,
κ1 = 0). It is a good way to measurehow distorting this
model is: for example, for camera A,C0 is 6.385 · 10−3

in normalized coordinates, which corresponds to about four
pixels of “mean distortion” over the image (not only in
the corners!). The measureCt says that there is about 0.5
pixel RMS between the distortion model computed with our
method and the Tsai model, for all camera/lens combina-
tions, which means that the quality of our method is intrin-
sically acceptable, but there is still no way to tell which of
both methods, Tsai or automatic, gives best results. For cam-
eras with high distortion, like the IndyCam and the cameras
with 8-mm lens, the center of distortion and the distortion
aspect ratio are close to the principal point and the image
aspect ratio computed by Tsai calibration.

Table 1. The distortion parameters obtained on various camera/lens setups
using our method, in normalized image coordinates. First radial distortion
parameterκ1, position of the center of distortioncx, cy , and distortion as-
pect ratiosx (not necessarily the same asSx, the image aspect ratio).C0
is the closeness with a zero-distortion model,Ct is the closeness between
these parameters and the ones found by Tsai calibration,ψ(κ′

1) is the first-
order radial distortion converted from results of Tsai calibration (Table 2)
using the distortion center (cx, cy) and aspect rationsx from our method.
Cf is the RMS residual error of the convertion. All parameters are dimen-
sionless.A is IndyCam,B is Sony XC-75E camera with 8-mm lens,C is
Sony XC-75E camera with 12.5-mm lens,D is Sony XC-75E with 16-mm
lens,E is Pulnix camera with 8-mm lens

camera/lens A B C D E

cx 0.493 0.635 0.518 0.408 0.496

cy 0.503 0.405 0.122 0.205 0.490

sx 0.738 0.619 0.689 0.663 0.590

κ1 0.154 0.041 0.016 0.012−0.041

C0.103 6.385 2.449 1.044 0.770 2.651

Ct.103 0.751 0.923 0.811 0.626 N/A

ψ(κ′
1) 0.137 0.028 0.004 0.002 N/A

Cf .103 0.217 0.516 0.263 0.107 N/A

Table 2. The distortion parameters obtained using the Tsai calibration
method, in normalized image coordinates: position of the principal point,
and image aspect ratio, First radial distortion parameter. See Table 1 for
details on the camera/lens configurations

camera/lens A B C D

c′x 0.475 0.514 0.498 0.484

c′y 0.503 0.476 0.501 0.487

s′
x 0.732 0.678 0.679 0.678

κ′
1 0.135 0.0358 0.00772 0.00375

The seventh line of Table 1 gives the results of the con-
version from the Tsai set of parameters (c′x, c

′
y, s

′
x, κ

′
1) (Ta-

ble 2) to a model where the center and aspect ratio of dis-
tortion are fixed to the valuescx, cy, sx. The resulting set of
parameters is (cx, cy, sx, ψ(κ′

1)), and the RMS residual error
of the convertion, i.e., the closeness

Cf = C((cx, cy, sx, f (κ′
1)), (c′x, c

′
y, s

′
x, κ

′
1)),

is always below one third of a pixel (last line of the ta-
ble), which allows us to comparef (κ′

1) with κ1. In fact,
for all camera configurations, parameterf (κ′

1) is close to
κ1 obtained by our automatic calibration method, meaning
that, once again, our results are very close to those given by
Tsai calibration, although theylook different (especially for
low-distortion lenses).

Figure 5 shows a sample image, before and after the cor-
rection. This image was affected by pin-cushion distortion,
corresponding to a positive value ofκ1. Barrel distortion
corresponds to negative values ofκ1.

5.4 Choice of the distortion model

In this experiment, we use an underwater fish-eye lens
(Fig. 6), and we want to find which distortion model best
fits this lens. Besides, we will try to evaluate which order
of radial distortion is necessary to get a given accuracy.
The distortion models tested on this lens are FOV1, FOV2,
FOV3 (first-, second-, and third-order FOV models), P1, P2,
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Fig. 4. Some of the images that were used for distortion calibration. Even
blurred or fuzzy pictures can be used

Table 3. The results of calibration on the same set of images using different
distortion models. Number of segments detected, number of edgels forming
these segments, mean segment length, and mean edgel distortion error

model no. seg. no. edgels seg. len. dist. err.·103

FOV1 591 78646 133.1 0.312

FOV2 589 77685 131.9 0.298

FOV3 585 79718 136.3 0.308

P1 670 71113 106.1 0.304

P2 585 77161 131.9 0.318

P3 588 77154 131.2 0.318

P-1 410 48352 117.9 0.300

P-2 534 68286 127.9 0.308

P-3 549 71249 129.8 0.312

P3 (first-, second- and third-order polynomial models), P-1,
P-2, P-3 (first, second and third order inverse polynomial
models).

Results (Table 3) show for each model the total num-
ber of segments detected at the end of the calibration stage,
the number of edgels forming these segments, and the mean
edgel distortion error (Eq. 15) in normalized image coordi-
nates.

The image size is 384×288, and we notice that the mean
edgel distortion error is almost the same for all models, and
comparable to the theoretical accuracy of the edge detection
method (0.1 pixel) [11]. We can judge the quality of the dis-
tortion models from the number of detected edgels which
were classified as segments and from the mean segment
length. From these, we can see that model FOV3 gives the
best results, and that all versions of the FOV model (FOV1,
FOV2, FOV3) perform better than polynomial models (P1,
P2, P3) for this lens. We also notice that inverse polynomial
models (P-1, P-2, P-3) perform poorly compared with their
direct counterpart. From these measurements, we clearly see
that, though they have the same number of degrees of free-
dom, different distortion models (e.g., FOV3, P3 and P-3)
describe more or less accurately the real distortion trans-
formation. Therefore, the distortion model must be chosen
carefully.

Fig. 5. A distorted image with the detected segments (top) and the same
image at the end of the distortion calibration with segments extracted from
undistorted edges (bottom): some outliers (wrong segments on the plant)
were removed and longer segments are detected. This image represents the
worst case, where some curves may be mistaken for lines

Table 4. Residual errors in 10−3 normalized coordinates after converting
from models FOV3 and P3 to other models

from \ to FOV1 FOV2 FOV3 P1 P2 P3

FOV3 0.69 0.10 N/A 2.00 0.21 0.03

P3 1.00 0.04 0.02 2.08 0.03 N/A

from \ to P-1 P-2 P-3

FOV3 7.29 1.32 1.16

Once we have chosen the distortion model (FOV in this
case), we still have to determine what order is necessary to
get a given accuracy. For this, we use the residual error of
the conversion from the highest order model to a lower order
model (Sect. 4.3). These residuals, conputed for conversions
from FOV3 and P3 models, are shown Table 4.

From these results, we immediately notice that inverse
polynomial models (P-1, P-2, P-3) are completely inadequate
for this lens, since they can lead to mean distortion errors
from one half to several pixels, depending on the order, but
we already noticed that these models were not suitable from
the calibration results (Table 3).
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Fig. 6. An image taken with underwater fish-eye lens, and the same image
undistorted using model 3f . The parallel lines help checking the result of
distortion calibration

The most important result is that by using FOV2 instead
of FOV3, we will get a mean distortion error of about 0.2
pixel (for a 512×512 image). If we use P2, this error will
be 0.4 pixel, and if we use FOV1, it will be 1.4 pixels. Con-
sequently, if we need the best accuracy, we have to use the
FOV3 model, but FOV2 and P2 represent a good compro-
mise between performance and accuracy. FOV2 is especially
interesting, since a closed-form inverse function is available
for this model.

This investigation carried out with our underwater cam-
era, but the same investigation could be done with other
lenses. This could, of course, lead to adifferent optimal dis-
tortion model than FOV2, but the method would be the same.

6 Discussion

With computer vision applications demanding more and
more accuracy in the camera model and the calibration of its
parameters, there is definitely a need for calibration meth-
ods that do not rely on the simple projective linear pinhole
camera model. Camera optics still have lots of distortion,

and zero-distortion wide-angle lens exist, but remain very
expensive.

The automatic distortion calibration method presented
here has many advantages over other existing calibration
methods that use a camera model with distortion [3, 4, 25,
27]. First, it makes very few assumptions on the observed
world: there is no need for a calibration grid [3, 4, 27]. All
it needs is images of scenes containing 3D segments, like
interior scenes or city scenes. Second, it is completely auto-
matic, and camera motion need not to be known [24, 25]. It
can even be applied to images acquired offline, which could
come from a surveillance videotape or a portable camcorder.
Results of distortion calibration and comparison with a grid-
based calibration method [18] are shown for several lenses
and cameras.

If we decide to calibrate distortion, there is not a unique
solution for the choice of the kind of distortion model [1]
and the order of this distortion model. For example, fish-eye
lenses may not be well represented by the traditional polyno-
mial distortion model. We presented an alternative fish-eye
model, called the FOV model, together with methods to de-
termine which model is best for a given lens, and at which
order. This study was made in the case of an underwater
fish-eye camera, and the results showed that the highest or-
der model may not always be necessary, depending on the
required accuracy, and that different models with the same
number of parameters do not necessarily give the same ac-
curacy.

Once the distortion is calibrated, any computer vision
algorithm that relies on the pinhole camera model can be
used, simply by applying the inverse of the distortion either
to image features (edges, corners, etc.) or to the whole image.
This method could also be used together with self-calibration
or weak-calibration methods that would take into account
the distortion parameters. The distortion calibration could
be done before self-calibration, so that the latter would use
undistorted features and images, or during self-calibration
[29], the distortion error being taken into account in the
self-calibration process.
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