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Abs t rac t .  Some medical interventions require knowing the correspon- 
dence between an MRI/CT image and the actual position of the pa- 
tient. Examples are in neurosurgery or radiotherapy, but also in video 
surgery (laparoscopy). Recently, computer vision techniques have been 
proposed to find this correspondence without any artificial markers. Fol- 
lowing the pioneering work of [GLPI+94], [CZH+94], [CDT+92], [SHK94] 
and [STAL94], we propose in this paper an alternative approach. 
We propose to trade the laser range finder for two cameras. Hence, we 
get dense reconstruction of the patient's surface and this allows us to 
compute the normals to the surface. We present a new method for rigid 
registration when surfaces are described by points and normals. It does 
not depend on the initial positions of the surfaces, deals with occlusion 
in a strict way and takes advantage of the normal information. 
Results are presented on real images. 

1 I n t r o d u c t i o n  

Medical images are commonly used to help establish a correct diagnosis. As they 
contain spatial information, both anatomical and functional, they can also be 
used to planify therapy, and even in some cases to control the therapy. 

A recent overview of these fields of research can be found in [Aya93] and 
in [TLBM94], a spectacular use of planification and control of therapy using 
medical images and robots can be found in [Tay93, CDT+92, LSB91, LC90] for 
surgery and [STAL94] for radiotherapy. 

More recently, the possibility of helping the surgeon to control the therapy 
with a projection of some pre-operative images directly onto the patient during 
surgery, was presented in [GLPI+94, CZH+94, StIK94]. 

The idea is to present on the patient some anatomical or pathological struc- 
tures segmented onto pre-operative images, which are difficult to observe during 
surgery because they are still hidden, or simply because they are not imme- 
diately visible under normal lighting conditions (a tumor may be much more 
visible on a particular MRI image than with direct observation). This process is 
called enhanced visualization or augmented reality. 

To project  an image on a patient,  a future solution will probably be the use of 
semi-transpaxent glasses or screen, allowing both the direct observation and the 
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chosen image projection. A somewhat simpler solution consists in acquiring a 
video image of the patient from a point of view similar to the surgeon's one, and 
to fuse the chosen pre-operative image with this video image. Such a solution 
was described in [GLPI+94]. 

The difficult task is then to register, if possible in real time, the video image of 
the patient (intra-operative image) with the pre-operative image. This problem 
could be solved with artificial marker visible in both images, but this produces 
unacceptable constraints (e.g. pre-operative images must be taken the same day 
as the intervention, stereotactic frames are very painful to bear and can prevent 
a free access to the surgeon, etc. . .) .  

The registration problem is solved without any artificial marker by [GLPI+94] 
and [SHK94] with an intermediate laser range finder, which provides a 3D de- 
scription of the patient's surface. This surface is then matched against the surface 
of the segmented corresponding surface in the volumetric medical image. As the 
laser range finder is calibrated with respect to the camera, the medical image 
can be fused with the video image. 

In this paper we propose an alternative solution, where we would change the 
laser range finder for two cameras, and build the patient's surface with passive 
stereovision [DF94, Kan93]. Note that [CZH+94] also uses a stereo system. 

The advantages of such an approach are the following: first, we use passive vi- 
sion, instead of a laser beam, which can be annoying in the surgery room. Second, 
having stereo cameras, the final enhanced visualization can be done in stereo- 
vision, providing a much more vivid representation of the patient's anatomy. 
Third, we get a dense reconstruction of the patient's surface and this allows us 
to compute the normals to the surface. Thanks to these normals, we may intro- 
duce a completely new method for rigid registration when surfaces are described 
by points and normals as it can often be the case in medical imaging. Fourth, 
thanks to the density of the surface descriptions, we believe that we can get a 
more accurate registration than the techniques using sparse data. 

The paper is organized as follows: in section 2 we briefly describe the geome- 
try of the registration problem. In section 3, we introduce our new algorithm to 
find an estimate of the rigid displacement based on bitangent segments and we 
analyze the complexity of this algorithm. In section 4, we present a new distance 
minimization algorithm, which is an extension of the iterative closest point al- 
gorithm, dealing with occlusion in a strict manner and taking advantage of the 
normal information. Experimental results are presented in section 5. Finally, 
future work is presented in conclusion. 

2 Geometry of the registration problem 

Before the intervention, an MRI/CT image of the patient's head is acquired. 
This image contains the skin and the brain of the patient and also a possible 
tumor. The goal is to find, during the intervention, the projective transformation 
which maps this MRI/CT image on a video image of the patient's head. 

Following the approach presented in [GLPI+94, CZH+94, SHK94], we also 
split the problem in two stages: reconstruction and rigid registration. But the 
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Fig. 1. A surface and two bitangent points M1 and M2. Let nl and n2 be the normals 
at these points. M1 and M2 are bitangent if the plane defined by (M1, nl) and the 
plane defined by (M2,n2) are the same. Another definition is that nl and n2 are 
identical and that the line M1 M2 is orthogonal to these two vectors. 

way we perform the surface reconstruction is different. We use passive stereo as 
described in [DF94]. The result is a dense description of the patient's surface by 
points and normals. The coordinates of these points and normals are expressed 
in the camera frame. Because the transformation which maps the reconstructed 
image to the camera image is known, the problem is to find the transformation 
between the MtZI/CT image and the reconstructed surface. 

In order to find this transformation, we extract in the MRI/CT image the 
patient's surface and we get a description by points and normals. The rigid 
registration problem is the following: 
Given two surfaces described by points and normals, find the rigid displacement 
that best superposes these two surfaces. 

As mentioned in [GLPI+94], this algorithm must not depend on the initial 
relative positions of the surfaces, it must be accurate and robust. 

3 Finding  an initial est imate  of  the  rigid displacement  

The basic idea is to compute independently on each surface the set of pairs of 
points sharing the same tangent plane (see figure 1). We call such pairs b r a n -  
gent  points.  They correspond to semi-differentiai invariants [GMPO92]. The 
technique for computing these pairs is described in [FAF94]. We simply note 
here that the algorithm is quasi-linear in the number of points describing the 
surface, and, because it involves only derivatives of order 1, the bitangent points 
calculation is quite stable. 

In the ideal case, because the distance between the two bitangent points is 
invariant under rigid displacement, the following algorithm would be very effi- 
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cient to rigidly superpose a surface $I on a surface $2: 
(1) choose a pair P1 of bitangent points on $1. Let d(P1) be the distance between 
the two points. 
(2) Compute the set SameDistance(P1) of pairs of bitangent points on $2 such 
that the distance between the two bitangent points is equal to d(P1). 
(3) For each pair P2 in SameDistance(P1), compute the two possible rigid dis- 
placements corresponding to the superposition of the two pairs P1 and P2 and 
of their normals. Stop when the rigid displacement which superposes $1 on $2 
is found. 

In practice, corresponding pairs of bitangent points cannot be exactly super- 
posed because of the point discretization error and because of the error in the 
computation of the normal. Moreover, only a part of the reconstructed surface 
$1 may be superposed on the patient's surface extracted from the MRI image $2. 
So, the actual algorithm is slightly more complex, but is basically as stated. A 
detailed description and an analysis of the complexity can be found in [FAF94]. 
We simply note that the complexity of the algorithm is quasi-linear in the num- 
ber of points on the surfaces and that the risk of stopping the algorithm with 
a wrong initial estimate decreases extremely quickly with the number of points 
(when the two surfaces actually show some overlapping regions up to a rigid 
displacement). 

4 T h e  new distance minimizat ion algorithm 

4.1 The Iterative Closest Point algorithm 

Using the pairs of bitangent points as described in the previous section~ we get an 
estimate (it0, to) of the rigid displacement to superpose $1 on $2. In order to find 
an accurate rigid displacement we have developed an extension of an algorithm 
cMled "the Iterative Closest Point algorithm" which was introduced by several 
researchers (IBM92], [Zha94], [CM92], [CLSB92]). We sketch the original ICP 
algorithm, which searches for the rigid displacement (It, t) which minimizes the 
energy 

E ( R , t )  = E ]]RMI + t - ClosestPoint(RM~ + t)l] 2, 
M~ES1 

where ClosestPoin$ is the function which associates to a space point its closest 
point on $2. 

The algorithm consists of two iterated steps, each iteration i computing a 
new estimation (iti, t i)  of the rigid displacement. 

I. The first step builds a set Matchi of pairs of points: for each point M on 
$1, a pair (M, N) is added to Matchi, where N is the closest point on 82 to 
the point R I_ IM + ti-1. 

2. The second step is the least squares evaluation of the rigid displacement 
(ttl, t~) to superpose the pairs of Matchi. 
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The termination criterion depends on the approach used: the algorithm stops 
either when a) the distance between the two surfaces is below a fixed threshold, b) 
the variation of the distance between the two surfaces at two successive iterations 
is below a fixed threshold or c) a maximum number of iterations is reached. 

This ICP algorithm is efficient and finds the correct solution when the ini- 
tial estimate (Ro, to) of the rigid displacement is "not too bad" and when each 
point on S1 has a correspondent on S~.. But in practice, this is often not the case. 
For example in our application, as explained in the previous section, the recon- 
structed surface usually only describes partially the patient's surface and often 
includes a description of the patient's environment. The next two subsections 
explain how we deal with these two problems. 

4.2 Working with incomplete surfaces  

In step 1 of the iterative algorithm, we map each point of St to a "closest 
point" on $2. But when the two surfaces are partially reconstructed, some points 
on $1 do not have any homologous point on $2. Thus, given a point M on 
$1, (Ri-1,  t i-1),  and ClosestPoint(Ri_lM + t i-1),  we have to decide whether 
(M, ClosestPoint( Ri_~M + t i-1 ) ) is a plausible match. This is very impor- 
tant  because, if we accept incorrect matches, the found rigid displacement will be 
biased (and therefore inaccurate), and if we reject correct matches, the algorithm 
may not converge towards the best solution. 

As proposed in [Aya91], we make use of the extended Kalman filter (EKF). 
This allows us to associate to the six parameters of (Ri, t i)  a covariance matrix 
Si and to compute a generalized Mahalanobis distance 6 for each pair of matched 
points (M, N). This generalized Mahalanobis distance, under some assumptions 
on the noise distributions and some first-order approximations, is a random 
variable with a X 2 probability distribution. By consulting a table of values of 
the X 2 distribution, it is easy to determine a confidence level e for 6 corresponding 
to, for example a 95% probability of having the distance 6 less than e. In this 
case, we can consider the match (M, N) as likely or plausible when the inequality 
6 < e is verified and consider any others as unlikely or unplausible. 

This distinction between plausible and unplausible matches implies a change 
in the second step of the iterative algorithm. Given Matchl, instead of computing 
the rigid displacement (R, t) which minimizes the least squares criterion 

[IR, M + t , -  NJJ 2, 
(M,N) E Matchl 

we recursively estimate the six parameters of (R, t), and the associated covari- 
ance matrix which minimizes the criterion 

( R , M  + tl  - N) tW~-I(RIM + ti  - g ) ,  
(M,N) E Match~ a~d (M,N) is plausible 

where W i  is a covariance matrix which allows us, for example, to increase the 
importance of high curvature points. 

More details about the meaning of "plausible or not" and about the EKF 
can be found in [FAF94]. 
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4.3 Using the normal information 

As is commonly encountered with any minimization algorithm, the ICP algo- 
r i thm may become t rapped in a local minimum. To reduce this problem, we 
propose in this subsection to make use of the normal information and to define 
a new criterion to minimize. In our formulation, surface points are no longer 3D 
points: they become 6D points. Coordinates of a point M on the surface S are 
(x ,y ,z ,n~,nu,nz)  where (n~,nv,nz) is the normal to S at M. For two points 
M(x ,y , z ,  nx,ny,nz)  and N(x' ,y ' ,  ' r , z , n~, ny, nrz) we define the distance: 

d ( M , g )  = ( al(x - x') 2 + a2(y - y,)2 + a3(z - z ' )2+ 

Y 

where ai  is the inverse of the difference between the maximal and minimal value 
of the i th coordinate of points in $2. Using this definition of distance, the closest 
point to  P on $2 is a compromise between the 3D distance and the difference in 
normal orientation 1. 

This new definition of the distance between points naturally implies modifi- 
cations to steps one and two of the ICP algorithm in order to minimize the new 
energy: 

E ( R , t )  - - - -  ~MeS1 d( ( R M  + t, Rnl (M)) ,  
ClosestPoin~-6D((Ri_lM + t,  R~- ln l  (M)))  2, 

where nl  (M) is the normal on $1 at point M and ClosestPoint_6D is the new 
6D closest point function. 

In step one, the closest point now has to be computed in 6D space. We use 
the kd-tree technique first proposed by Zhang ([Zha94]) for the 3D case. The 
second step also has to be modified: the criterion which defines the best rigid 
displacement must use the new 6D distance. Otherwise, it is not possible to 
prove the convergence of our new ICP algorithm (see [FAF94]). Hence, the rigid 
displacement (R~, t i )  is now defined as the minimum of the function 

f ( R ,  t )  = ~ d(RM + t, N) 2, 
( M,N)Erna~ch~ 

where, the coordinates of the point R M  "t- t are ( R M  + t ,  Rn l  (M)).  
In practice, we use extended Kalman filters to minimize this new criterion 

at step 2. Even though it is is non linear, the minimization works very well. 
Note tha t  this use of extended Kalman filters allows us to compute Mahalanobis 
distances and to determine if a match is plausible or not as explained in the 
previous subsection. 

1 Of course, only two parameters are necessary to describe the orientation of the normal 
(for example the two Euter angles). But we use (n~,ny, n~) because the Euclidean 
distance better reflects the difference of orientation between the normals (that is 
not the case with the Euler angles because of the modulo problem) and we can use 
kd-trees to find the closest point as explained later. 
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Pig. 2. The bitangent lines computed on the MRI (left) and stereo (right) face sur- 
faces. Note that we selected the lines whose length varies between 2cm and lOcm. 

In order to t ry  to demonstrate that  the ICP algorithm, using the 6D distance, 
converges more often to the global minimum than the standard ICP algorithm, 
we conducted the following experiment. We chose 81 and $2 to be the same sur- 
face. Hence, the resulting transformation should be the identity. We run both the 
original and the modified algorithm choosing different initial rigid displacements 
(R0, to), at an increasing distance from the identity. The results are reported in 
[FAF94] and show that  our modified algorithm is in practice much less sensitive 
to the initial estimate (R0, to), and more robust to local minima. 

5 Results  

We now present an example of application of the framework presented in this 
section. 

First we compute on both the stereo reconstructed surface, and on the MRI 
surface (figure 2), the pairs of bitangent points. We find 598 pairs on the stereo 
surface and 5000 pairs on the ~¢IRI surface (obviously, the desired density of the 
bitangent pairs is a parameter of the bitangent extraction algorithm). Hence, 
there are more pairs on the MRI surface than on the stereo surface which makes 
the algorithm more efficient. The extraction requires about 30 seconds. ~. 

Using these pairs of bitangent points, we estimate the rigid displacement 
in about 30 seconds. Applying this estimate, 80% of the points on the stereo 
surface have their closest point at a distance lower than 8 m m .  This error has to 
be compared with the size of the voxel in the MRI image: 4ram x 4ram × 2 m m .  

Moreover, reca~ tha t  there are points on the stereo surface which do not have a 
homologous point on the MB~ surface. 

2 CPU times are given for a DEC-ALPHA workstation 
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Fig. 3. Left: The result of the rigid registration. The MRI surfaev is clearer and 
the stereo surface is darker. The alternation dark/clear shows that the registration 
is quite accurate. Right: The colorized MRI head surface obtained by attaching to 
each matched point the gray level of its corresponding point on the stereo surface. 
Thanks to the transparency effect~ one can observe the brain... 

Using this estimate of the rigid displacement, we run the modified iterative 
closest point algorithm. The MRI head surface is described by 15000 points and 
the stereo surface by 10000 points. It takes 20 seconds. Applying this new rigid 
displacement, 85% of the points on the stereo surface have their closest point 
at a distance lower than 3ram. The average distance between matched points is 
1.6ram. The result is presented in figure 3, left. 

Because we know the point-to-point correspondences between the MRI head 
surface and the stereo face surface (this is the result of the registration), and 
because for each point of the stereo surface we know the grey level from the video 
image, we can map the video image onto the MRI surface (figure 3, right). The 
fact that the points on the MRI surface have the right grey levels qualitatively 
demonstrates that the MRI/stereo matching is correct. 

Finally, we projected the brain onto the video image (see figure 4) using 
the computed projective transformation. In fact, we now have enough geometric 
and textural parameters to produce a stereo pair of realistic images from a 
continuous range of viewpoints and provide the surgeon the feeling of seeing 
inside the patient's head and guide him/her during the intervention. 

6 C o n c l u s i o n  a n d  f u t u r e  w o r k  

We proposed to use passive stereovision and a new rigid matching algorithm to 
register pre-operat~ve with intra-operative images. Though we have presented 
results on real data, a lot of work still has to be done. We would like to compare 
the techniques described in this paper with respect to the techniques presented 
by others. For example, we plan to develop procedures to validate rigorously 
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Fig. 4. The projection of the brain in the two video images using the projective trans- 
formation computed as explained in this paper. A stereoscopic display could provide 
the surgeon with the feeling of seeing inside the patient's head. The two presented 
images cannot be visually fused in this position, because the baseline between the two 
optical centers of the video cameras was vertical in this experiment: one can notice 
that the camera of left image was bellow the camera of the right one. This will be 
corrected in further experiments. 

the accuracy of the methods. We also have to validate our approach on a larger 
scale, if possible in hospital environment. 

We believe that  it should be possible to perform real t ime tracking of the 
patient and enable the surgeon to move either patient or the 2D sensor. Indeed, 
for tracking we just  need to correct a rigid displacement which is quite close 
to the right solution. Hence, because the initialization would be good, it should 
be possible to use the iterative closest point algorithm with just a few recon- 
s tructed points without local minimum problem and to get fast convergence. 
We hope~and believe tha t  it should be possible to perform the loop reconstruc- 
t ion/registrat ion/visualization at a 1Her tz  frequency using still existing fast 
stereo systems (as [DF94, Kan93]) and efficient graphic hardware (as Kubota  or 
Silicon Graphics). 

The  passive video system should also allow us to build a system to visualize 
the surgeon's instruments in the M R I / C T  image. Indeed, assume that  on each 
instrument  a few points (at least three) are easily identified in the two camera 
images. V~e can triangulate these points and find the position of the instruments 
with respect to the M R I / C T  image. We believe that  this could be helpful for 
surgeons, especially for interventions requiring high accuracy. 
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