Modeling and Rendering Architecture from Photographs

Paul Debevec
University of Southern California
Institute for Creative Technologies

Immersion '94
Michael Naimark
John Woodfill
Paul Debevec
Leo Villarreal
Ramin Zabih
Interval Research Corporation

Stereo Image Capture
Depth Map
Synthetic Views

The Chevette Project 1991

Modeling and Rendering Architecture from Photographs
(Debevec, Taylor, and Malik 1996)

Brick Model
User-Defined Edges
Recovered Model

Façade
Debevec, Taylor, and Malik
SIGGRAPH '96

Paul Debevec - "Modeling and Rendering Architecture from Photographs" - www.debevec.org
Façade Blocks

Parameterized Block

Model Hierarchy

Relation can be:
* Arbitrary 6 DOF
* Fixed Rotation
* Fixed Translation
* Geometric Relationship

Reconstruction Algorithm

An objective function \(O \) measures the misalignment between the marked edges and the corresponding projected edges of the model.

\(O \) is minimized with respect to the model parameters and camera positions.

An initial estimate is obtained by a separate procedure.

Algorithm with Initial Estimate Procedure

1. Solve for camera rotations, independently, based on edge orientations.
2. Hold camera rotations fixed; solve for other parameters (often linear).
3. Perform full non-linear optimization, starting from near the solution.
Modeling with blocks works because:
Convenient for architecture
Recovers Complete Models
Reduces number of model parameters, e.g.
Campanile model has:
- 2,596 parameters as independent edges
- 240 parameters as independent blocks
- 33 parameters as constrained blocks
- Few marked features required
- Easier to solve

Surfaces of Revolution

Arches and Surfaces of Revolution

Rendering with Projective Texture Mapping

Rendering with View-Dependent Texture Mapping

To render, determine to which triangle the viewpoint belongs
Compute barycentric weights for the triangle vertices
Render the polygon with a weighted average of the three vertex images

Debevec, Borshukov, and Yu. Eurographics Rendering Workshop 1998
Model-Based Stereo

Given a key and an offset image,
- Project the offset image onto the model
- View the model through the key camera
 → Warped offset image

Stereo becomes feasible between key and warped offset images because:
- Disparities are small
- Foreshortening is greatly reduced

Synthetic Views of Refined Model

Four images composited with
Model-Based Stereo and VDTM
Application: Rouen Revisited
(Golan Levin and Paul Debevec)
Two Depictive Studies

Synthetic View: 1996
Synthetic View: 1886
Synthetic View: Monet Painting

Application: The Campanile Movie
Paul Debevec, George Borshukov, Victor Yu, Jason
Koare, Vivian Jiang, Chris Wright, Jamie Klosowy, Charles
Benton, Tim Hawkins, Charles Ying

Thanks to Jonathan Valla, Jeff Davies, Susan Taylor, Al Verco, Peter
Batesman, Camilla Taylor, Luke Paul, and Michael Namarck, Dennis
Pyle, Bessie Bynon, Lindsay Kivist, Oliver Crows, and Peter Fletcher,
and well in Charlie and Thomas Bembee, Linda Reagen, John Canay,
Michael, Emily, Jenne, Brigit Evans, Eva Maria, Erbacht, Lisa, sandgren,
Ella Perry, and Camilla J. Taylor.

Additional thanks the Berkeley Computer Vision Group, the
Berkeley Multimedia Research Center, the Berkeley Computer
Graphics Group, the ONR MERL Program, Interval Research
Corporation, and Silicon Graphics, Inc.

Cris Benton: Kite Aerial Photography

Video

Cris Benton: Kite Aerial Photography

http://www.archip.ucd.berkeley.edu/kap/

Tower Photographs

Paul Debevec - "Modeling and Rendering
Architecture from Photographs" -
www.debevec.org

4-5
Campanile Model

Environment Photographs

Campus Model (Campanile + 40 buildings)

Terrain Modeling
- Delaunay triangulation of building bases + other recovered ground points
- Extension out to horizon

Video
Comparison: Time-of-flight Laser Scanning
Laser scan of library's Cupola.
courtesy of Cyra Corporation

Application: The Matrix

www.mvfx.com

The Matrix – Reconstruction Stills – EF9

Video

Commercial Product:
Metacreations
(now Adobe)

Canoma

www.metacreations.com/canoma
www.canoma.com

Application: Inverse Global Illumination
Yizhao Yu, Paul Debevec, Hiendra Malik, Tim Hawkins
SIGGRAPH ‘99
Recovered Geometry and Viewpoints

Real/Synthetic Comparison
Same scene, same lighting, same object

Real/Synthetic Comparison
New viewpoint, new lighting, new object

Modeling in Flatland

Paul Debevec - "Modeling and Rendering Architecture from Photographs" -
www.debevec.org

4-8
Thanks

Christine Cheng, H-P Dutker, Tal Gartinkel, Tim Hawkins, Jenny Huang, Sam Khoury, George Borshukov, Jason Luros, Jitendra Malik, Westley Sarokin, Camillo Taylor, Chris Wright