
Télécom 2A – Algo Complexity
(1)

Time Complexity
and the divide and conquer strategy

Or : how to measure algorithm run-time
And : design efficient algorithms

Oct. 2005

Télécom 2A – Algo Complexity
(2)

Contents

1. Initial considerations
a) Complexity of an algorithm
b) About complexity and order of magnitude

2. The “divide and conquer” strategy and its
complexity

3. A word about “greedy algorithms”

Télécom 2A – Algo Complexity
(3)

Basic preliminary considerations

• We are interested by the asymptotic time
complexity T(n) with n being the size of the
input

• order of magnitude : O(f(n))
∃ A, ∃ α ∀n>A g(n)< α f(n) => g is said to be

O(f(n))
Examples :

 n2 is O(n3) (why?), 1000n + 1010 is O(n)

Télécom 2A – Algo Complexity
(4)

Understanding order of magnitude

2615102n

4423910n3

930024431n²
5,6 . 1054893140n logn
8,6 . 10760 0001000n

∞∞21000 log2 n

1 day1 min1 secTime
complexity

If 1000 steps/sec, how large can a problem be in
order to be solved in :

Télécom 2A – Algo Complexity
(5)

Is it worth to improve the code?

• If moving from n² to n.logn, definitively
• If your step is running 10 times faster,

For the same problem, 10 time faster!
For the same time how larger might the data

be:
 Linear : 10 time larger
 n.logn : almost 10 time larger
 n² : 3 time larger
 2n : initial size + 3.3 ◄Forget about

Télécom 2A – Algo Complexity
(6)

Complexity of an algorithm

• Depends on the data :
If an array is already sorted, some sorting

algorithms have a behavior in O(n),
• Default definition : complexity is the

complexity in the worst case
• Alternative :

Complexity in the best case (no interest)
Complexity on the average :

 Requires to define the distribution of the data.

Télécom 2A – Algo Complexity
(7)

Complexity of a problem
• The complexity of the best algorithm for

providing the solution
Often the complexity is linear: you need to input the

data;
Not always the case : the dichotomy search is in O(n

logn) if the data are already in memory
• Make sense only if the problem can be solved :

Unsolvable problem : for instance: deciding if a
program will stop (linked to what is mathematically
undecidable)

Solvable problem: for instance: deciding if the
maximum of a list of number is positive; complexity
O(n)

Télécom 2A – Algo Complexity
(8)

Complexity of sorting

• Finding the space of solutions : one of the
permutations that will provide the result
sorted : size of the space : n!

• How to limit the search solution
Each answer to a test on the data specifies a

subset of possible solutions
In the best case, the set of possible solution in

cut into 2 half

Télécom 2A – Algo Complexity
(9)

Sorting (cont.)

 If we are smart enough for having this
kind of tests : we need a sequence of k
tests to reach a subset with a single
solution.

Therefore : 2k ~ n!
So

Therefore sorting is at best in O(n.logn)
And we know an algorithm in O(nlogn)

T1

T2.1 T2.2

T3.1 T3.2

ennnn
e

n
nnk

n

n

22222
22 loglogloglog!log !+""" ##

Télécom 2A – Algo Complexity
(10)

Examples of complexity

• Polyomial sum : O(n)
• Product of polynoms : O(n²) ? O(nlogn)
• Graph coloring : probably O(2n)

• Are 3 colors for a
planar graph sufficient?
• Can a set of numbers
be splitted in 2 subsets
of equal sum?

Télécom 2A – Algo Complexity
(11)

Space complexity

• Complexity in space : how much space is
required?
don’t forget the stack when recursive calls

occur
Usually much easier than time complexity

Télécom 2A – Algo Complexity
(12)

The divide and conquer
strategy

• A first example : sorting a set S of values
sort (S) =

if |S| ≤ 1 then return S
else divide (S, S1, S2)

 fusion (sort (S1), sort (S2))
end if

fusion is linear is the size of its parameter;
divide is either in O(1) or O(n)

The result is in O(nlogn)

Télécom 2A – Algo Complexity
(13)

The divide and conquer principle

• General principle :
Take a problem of size n
Divide it into a sub problems of size n/b
 this process adds some linear complexity cn

• What is the resulting complexity?

• Example . Sorting with fusion ; a=2, b=2

11 =

+=

)(

)()(

T

cn
b

n
aTnT

Télécom 2A – Algo Complexity
(14)

Fundamental complexity result for
the divide and conquer strategy
• If

• Then
 If a=b : T(n) = O(n.logn)
 If a<b and c>0 : T(n) = O(n)
 If a<b and c=0 : T(n) = O(logn)
 If a>b :

Proof : see lecture notes section 12.1.2

11 =

+=

)(

)()(

T

cn
b

n
aTnT

)()(log abnOnT =

◄ Most frequent case

Télécom 2A – Algo Complexity
(15)

Proof steps

• Consider n = bk (k = logbn)
•

• Summing terms together :

)(log)(log)(

)()(

)()(

)()(

nn

i
i

i
i

i
i

bb aTa
b

cn
a

b

n
Ta

b

n
Ta

b

cn
a

b

n
Ta

b

n
aT

cn
b

n
aTnT

=

+=

+=

+=

+

!

1

1

1

2

2

KK

k
k

i

i a
b

a
cnnT += !

"

=

1

1

)()(

Télécom 2A – Algo Complexity
(16)

Proof steps (cont.)

• a<b the sum is bounded by a constant and
ak < n , so T(n) = O(n)

• a=b, c>0 ak = n , so T(n) = O(n.logn)
• a>b : the (geometric) sum is of order ak/n

Both terms in ak

Therefore

k
k

i

i a
b

a
cnnT += !

"

=

1

1

)()(

)()(log abnOnT =

Télécom 2A – Algo Complexity
(17)

Application: matrix multiplication
• Standard algorithm

For all (i,j)

• Divide and conquer:
Direct way :

Counting : b=2, a=8
 therefore O(n3) !!!

• Smart implementation: Strassen, able to bring it down to 7
Therefore

! =
=

n

k jkkiji bac
1 ,,, O(n3)

!!
"

#
$$
%

&
'!!
"

#
$$
%

&
=!!

"

#
$$
%

&

2221

1211

2221

11

2212

1211
2

BB

BB

AA

AA

CC

CC

)()(,log 8127
2 nOnO =

Only for large value of n (>700)

Télécom 2A – Algo Complexity
(18)

Greedy algorithms : why looking for
• A standard optimal search algorithm:
Computes the best solution extending a partial solution S’ only if its value

exceeds the initial value of Optimal_Value;
The result in such a case is Optimal_S; these global variables might be
modified otherwise

Search (S: partial_solution) :
if Final(S) then if value(S)> Optimal_Value then

Optimal_Value := value(S); Optimal_S := S;
 end if;

else for each S’ extending S loop
Search (S’);

end if

Complexity : if k steps in the loop, if the search depth is n :
O(kn)

Télécom 2A – Algo Complexity
(19)

Instantiation for the search of the
longest path in a graph

Longest (p: path)
-- compute the longest path without circuits in a graph
-- only if the length extends the value of The_Longest set
-- before the call; in this case Long_Path is the value of this path, …..
if Cannot_Extend(p) and then length(p)> The_Longest

then The_Longest := length(p); Long_Path := p;
 else let x be the end node of p;

 for each edge (x,y) such that y ∉ p loop
Longest (p ⊕ y);

end if;
-- initial call : The_Longest := -1;

 Longest (path (departure_node));

Télécom 2A – Algo Complexity
(20)

Alternative

• Instead of the best solution, a not too bad
solution?

Greedy_search(S: partial_solution) :
if final (S) then sub_opt_solution := S

 else select the best S’ expending S
greedy_search (S’)

 end if;

Complexity : O(n)

Télécom 2A – Algo Complexity
(21)

Greedy search for the longest path

Greedy_Longest (p: path) :
if Cannot_Extend(p) then Sub_Opt_Path := p

 else let x be the end node of p;
select the longest edge (x,y) such that y ∉ p

exp
Greedy_Longest (p ⊕ y);

 end if;

Obviously don’t lead to the optimal solution in the
general case

Exercise : build an example where it leads to the worst
solution.

Télécom 2A – Algo Complexity
(22)

How good (bad?) is such a search?

• Depends on the problem
Can lead to the worst solution in some cases
Sometimes can guarantee the best solution

Example : the minimum spanning tree (find a
subset of edges of total minimum cost
connecting a graph)
Edge_set := ∅
for i in 1..n-1 loop

Select the edge e with lowest cost not connecting already
connected nodes
Add e to Edge_set

End loop;

Télécom 2A – Algo Complexity
(23)

• Notice that this algorithm might not be in
O(n) as we need to find a minimum cost
edge, and make sure that it don’t connect
already connected nodes
This can be achieved in logn steps, but is out

of scope of this lecture : see the “union-find”
data structure in Aho-Hopcroft-Ulman

Télécom 2A – Algo Complexity
(24)

Conclusion:
What to remember

• Complexity on average might differ from worst
case complexity : smart analysis required

• For unknown problems, explore first the size of
solution space

• Divide and conquer is an efficient strategy
(exercises will follow); knowing the complexity
theorem is required

• Smart algorithm design is essential: a computer
100 times faster will never defeat an exponential
complexity

