Time Complexity and the divide and conquer strategy

Or: how to measure algorithm run-time

And: design efficient algorithms

Oct. 2005

Contents

- 1. Initial considerations
 - a) Complexity of an algorithm
 - b) About complexity and order of magnitude
- 2. The "divide and conquer" strategy and its complexity
- 3. A word about "greedy algorithms"

Basic preliminary considerations

- We are interested by the asymptotic time complexity T(n) with n being the size of the input
- order of magnitude : O(f(n))
 - $>\exists$ A, \exists α \forall n>A $g(n)<\alpha$ f(n)=>g is said to be O(f(n))
 - >Examples:
 - n^2 is $O(n^3)$ (why?), $1000n + 10^{10}$ is O(n)

Understanding order of magnitude

If 1000 steps/sec, how large can a problem be in order to be solved in :

Time complexity	1 sec	1 min	1 day
log ₂ n	21000	∞	∞
n	1000	60 000	8,6 . 10 ⁷
n logn	140	4893	5,6 . 10 ⁵
n²	31	244	9300
n^3	10	39	442
<u>∕</u> 2 ⁿ	10	15	26

Is it worth to improve the code?

- If moving from n^2 to n.logn, definitively
- If your step is running 10 times faster,
 - ➤ For the same problem, 10 time faster!
 - ➤ For the same time how larger might the data be:
 - Linear : 10 time larger
 - *n*.log*n* : almost 10 time larger
 - n^2 : 3 time larger
 - 2^n : initial size + 3.3

◄Forget about

Complexity of an algorithm

- Depends on the data :
 - ➤ If an array is already sorted, some sorting algorithms have a behavior in O(n),
- Default definition : complexity is the complexity in the worst case
- Alternative :
 - Complexity in the best case (no interest)
 - ➤ Complexity on the average :
 - Requires to define the distribution of the data.

Complexity of a problem

- The complexity of the best algorithm for providing the solution
 - Often the complexity is linear: you need to input the data;
 - Not always the case : the dichotomy search is in O(n logn) if the data are already in memory
- Make sense only if the problem can be solved :
 - Unsolvable problem : for instance: deciding if a program will stop (linked to what is mathematically undecidable)
 - ➤ Solvable problem: for instance: deciding if the maximum of a list of number is positive; complexity O(n)

Complexity of sorting

- Finding the space of solutions : one of the permutations that will provide the result sorted : size of the space : n!
- How to limit the search solution
 - ➤ Each answer to a test on the data specifies a subset of possible solutions
 - ➤In the best case, the set of possible solution in cut into 2 half

Sorting (cont.)

➤ If we are smart enough for having this kind of tests: we need a sequence of *k* tests to reach a subset with a single solution.

- \triangleright Therefore : $2^k \sim n!$
- So $k \approx \log_2! n \approx \log_2 \sqrt{2\pi n} \frac{n^n}{e^n} \approx \log_2 \sqrt{2\pi n} + n \log_2 n n \log_2 e$

T_{3.1}

- \triangleright Therefore sorting is at best in $O(n.\log n)$
- ➤ And we know an algorithm in O(nlogn)

Examples of complexity

- Polyomial sum : O(n)
- Product of polynoms : $O(n^2)$? $O(n\log n)$
- Graph coloring : probably $O(2^n)$

- Are 3 colors for a planar graph sufficient?
- Can a set of numbers be splitted in 2 subsets of equal sum?

Space complexity

- Complexity in space : how much space is required?
 - don't forget the stack when recursive calls occur
 - ➤ Usually much easier than time complexity

The divide and conquer strategy

A first example : sorting a set S of values

```
Fort (S) =

if |S| ≤ 1 then return S

else divide (S, S1, S2)

fusion (sort (S1), sort (S2))

end if
```

fusion is linear is the size of its parameter; divide is either in O(1) or O(n)The result is in $O(n\log n)$

The divide and conquer principle

- General principle :
 - Take a problem of size *n*
 - ➤ Divide it into a sub problems of size n/b
 - > this process adds some linear complexity *cn*
- What is the resulting complexity?

$$T(n) = aT(\frac{n}{b}) + cn$$
$$T(1) = 1$$

Example . Sorting with fusion ; a=2, b=2

Fundamental complexity result for the divide and conquer strategy

• If
$$T(n) = aT(\frac{n}{b}) + cn$$

 $T(1) = 1$

Then

- \triangleright If a=b : $T(n) = O(n.\log n)$
- Most frequent case
- ➤ If a < b and c > 0 : T(n) = O(n)
- \triangleright If a<b and c=0 : $T(n) = O(\log n)$
- ➤ If a>b:

$$T(n) = O(n^{\log_b a})$$

Proof: see lecture notes section 12.1.2

Proof steps

• Consider $n = b^k$ $(k = \log_b n)$

$$T(n) = aT(\frac{n}{b}) + cn$$

$$aT(\frac{n}{b}) = a^2T(\frac{n}{b^2}) + a\frac{cn}{b}$$
...
$$a^iT(\frac{n}{b^i}) = a^{i-1}T(\frac{n}{b^{i+1}}) + a^i\frac{cn}{b^i}$$

$$a^{\log_b(n)}T(1) = a^{\log_b(n)}$$

• Summing terms together:

$$T(n) = cn \sum_{i=1}^{k-1} (\frac{a}{b})^i + a^k$$

Proof steps (cont.)

$$T(n) = cn \sum_{i=1}^{k-1} (\frac{a}{b})^i + a^k$$

- a
b \rightarrow the sum is bounded by a constant and $a^k < n$, so T(n) = O(n)
- a=b, c>0 \rightarrow $a^k = n$, so $T(n) = O(n.\log n)$
- a>b : the (geometric) sum is of order a^k/n
 - ➤ Both terms in a^k
 - \triangleright Therefore $T(n) = O(n^{\log_b a})$

Application: matrix multiplication

Standard algorithm

$$c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$
 O(n³)

Divide and conquer:

➤ Direct way :

Counting: b=2, a=8
$$\begin{pmatrix} C_{11} & C_{12} \\ C_{12} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A2 \\ A_{21} & A_{22} \end{pmatrix} \times \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

therefore O(n³)!!!

Smart implementation: Strassen, able to bring it down to 7

$$ightharpoonup$$
 Therefore $O(n^{\log_2 7}) = O(n^{2.81})$

Only for large value of n (>700)

Greedy algorithms: why looking for

A standard optimal search algorithm:

INP Grenoble ENSIMAG

Computes the best solution extending a partial solution S' only if its value exceeds the initial value of *Optimal_Value*;

The result in such a case is *Optimal_S*; these global variables might be modified otherwise

Complexity: if *k* steps in the loop, if the search depth is *n*:

Instantiation for the search of the longest path in a graph

```
Longest (p: path)
-- compute the longest path without circuits in a graph
    only if the length extends the value of The Longest set
    before the call; in this case Long_Path is the value of this path, .....
if Cannot_Extend(p) and then length(p)> The_Longest
              then The_Longest := length(p); Long_Path := p;
else let x be the end node of p;
        for each edge (x,y) such that y \notin p loop
              Longest (p \oplus y);
end if:
-- initial call: The_Longest:= -1;
                  Longest (path (departure_node));
```

Alternative

 Instead of the best solution, a not too bad solution?

```
Greedy_search(S: partial_solution):
   if final (S) then sub_opt_solution := S
   else select the best S' expending S
       greedy_search (S')
   end if;
```

Complexity : O(n)

ENSIMAG

Greedy search for the longest path

```
Greedy_Longest (p: path):
    if Cannot_Extend(p) then Sub_Opt_Path := p
    else let x be the end node of p;
        select the longest edge (x,y) such that y ∉ p
        exp
        Greedy_Longest (p ⊕ y);
    end if;
```

Obviously don't lead to the optimal solution in the general case

Exercise: build an example where it leads to the worst solution.

How good (bad?) is such a search?

- Depends on the problem
 - > Can lead to the worst solution in some cases
 - Sometimes can guarantee the best solution

Example: the minimum spanning tree (find a subset of edges of total minimum cost connecting a graph)

```
Edge_set := Ø

for i in 1..n-1 loop

Select the edge e with lowest cost not connecting already connected nodes

Add e to Edge_set

End loop;
```


- Notice that this algorithm might not be in O(n) as we need to find a minimum cost edge, and make sure that it don't connect already connected nodes
 - ➤ This can be achieved in log n steps, but is out of scope of this lecture : see the "union-find" data structure in Aho-Hopcroft-Ulman

Conclusion: What to remember

- Complexity on average might differ from worst case complexity: smart analysis required
- For unknown problems, explore first the size of solution space
- Divide and conquer is an efficient strategy (exercises will follow); knowing the complexity theorem is required
- Smart algorithm design is essential: a computer 100 times faster will never defeat an exponential complexity

